
   

Beam Physics
with Intense Space-Charge

Lecturers:
John J. Barnard and Steven M. Lund
Lawrence Livermore National Lab

Grader and Simulation Lectures:
Rami A. Kishek
University of Maryland  

Course Notes:
United States Particle Accelerator School
Held 12-23 June, 2006
Waltham, Massachusetts
Sponsored by Boston University

LLNL: UCRLTM231628

LBNL: LBNL62783



BeamPhysics http://uspas.fnal.gov/programs/boston/BeamPhysics.htm

1 of 2 06/10/2006 11:39 PM

Beam Physics with Intense Space Charge
Instructors: John Barnard and Steven Lund, Lawrence Livermore

National Laboratory 
and Rami Kishek, University of Maryland 

Purpose and Audience
The purpose of this course is to provide a comprehensive introduction to 
the physics of beams with intense space charge.  This course is suitable
for graduate students and researchers interested in accelerator systems 
that require sufficient high intensity where mutual particle interactions in 
the beam can no longer be neglected.  Prerequisites: undergraduate 
level Electricity and Magnetism and Classical Mechanics.  Some
familiarity with plasma physics, special relativity, and basic accelerator 
physics is recommended but not required.  

Objectives
This course is intended to give the student a broad overview of the 
dynamics of beams with strong space charge. The emphasis is on 
theoretical and analytical methods of describing the acceleration and 
transport of beams.  Some aspects of numerical and experimental
methods will also be covered.  Students will become familiar with
standard methods employed to understand the transverse and 
longitudinal evolution of beams with strong space charge.  The material
covered will provide a foundation to design practical architectures. 

Instructional Method
Lectures will be given during morning sessions, followed by afternoon
discussion sessions, which will engage the student on the material 
covered in lecture. Daily problem sets will be assigned that will be 
expected to be completed outside of scheduled class sessions.  Problem
sets will generally be due the morning of the next lecture session.  A
final take home exam will be given on the second Thursday, and will 
cover the contents of the entire course. Two instructors and a teaching 
assistant will be available to for guidance during evening homework 
sessions.

Course Content
In this course, we will introduce you to the physics of intense charged 
particle beams, focusing on the role of space charge.  The topics include:
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particle equations of motion, the paraxial ray  equation, and the Vlasov
equation; 4-D and 2-D equilibrium  distribution functions (such as the
Kapchinskij-Vladimirskij,  thermal equilibrium, and Neuffer
distributions), reduced moment and envelope equation formulations of 
beam evolution; transport  limits and focusing methods; the concept of
emittance and the  calculation of its growth from mismatches in beam
envelope and from space-charge non-uniformities using system
conservation  constraints; the role of space-charge in producing beam
halos;  longitudinal space-charge effects including small amplitude and
rarefaction waves; stable and unstable oscillation modes of  beams
(including envelope and kinetic modes); the role of space charge in the 
injector; and algorithms to calculate space-charge effects in particle 
codes. Examples of intense beams will be given  primarily from the ion
and proton accelerator communities with  applications from, for
example, heavy-ion fusion, spallation neutron sources, nuclear waste 
transmutation, etc.

Reading Requirements
Extensive class notes will be provided that will serve as the primary
reference.  (to be provided by the USPAS) "The Theory and Design of 
Charged Particle Beams" by Martin Reiser (Wiley & Sons 1994) will be 
provided as a supplemental reference.

Credit Requirements
Students will be evaluated based on performance: final exam (20 % of
course grade), homework assignments (80 % of course grade).
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Transverse Equilibrium Distribution Functions: Outline

Vlasov Model

Vlasov Equilibria

The KV Equilibrium Distribution

Continuous Focusing Limit of the KV Equilibrium Distribution

Equilibrium Distributions in Continuous Focusing Channels

Continuous Focusing: The Waterbag Equilibrium Distribution

Continuous Focusing: The Thermal Equilibrium Distribution 

Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam

Continuous Focusing: The Density Inversion Theorem

References
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1) Vlasov Model

Vlasov-Poisson system

Review: lattices: continuous, solenoidal, and quadrupole

Review: Undepressed particle phase advance

2) Vlasov Equilibria

Equilibrium conditions

Single particle constants of motion

Plasma physics approach to beam physics

3) The KV Equilibrium Distribution

Hill's equation with linear space-charge forces

Courant-Snyder invariants for a uniform density elliptical beam

KV envelope equations 

KV equilibrium distribution

Canonical form of the KV distribution

Matched envelope structure

Depressed particle orbits

rms equivalent beams

Discussion/Comments on the KV model

Transverse Equilibrium Dist. Functions: Detailed Outline
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Detailed Outline - 2 

4) The Continuous Focusing Limit of the KV Equilibrium Distribution

Wavenumbers of particle oscillations

Distribution form

5) Continuous Focusing Equilibrium Distributions

Equilibrium form

Poisson's equation 

Moments

Example distributions

6) Continuous Focusing: The Waterbag Equilibrium Distribution

Distribution form

Poisson's equation

Equilibrium properties

7) Continuous Focusing: The Thermal Equilibrium Distribution

Overview

Distribution form

Poisson's equation

Equilibrium properties
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Detailed Outline - 3 
8) Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam

Poisson's equation for the perturbed potential due to a test charge

Solution for characteristic Debye screening

9) Continuous Focusing: The Density Inversion Theorem

Relation of density profile to the full distribution function

10) Comments on the plausibility of smooth, non-KV Vlasov equilibria in

       periodic focusing lattices

Discussion

Appendix A: Self-fields of a Uniform Density Elliptical Beam in Free Space

(separate handwritten notes)

Derivation #1, direct

Derivation #2, simplified  

Appendix B: Canonical Transformation of the KV Distribution 

(separate handwritten notes)

Canonical transforms 

Simplified moment calculations

References
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Vlasov Equation (see J.J. Barnard, Introductory Lectures):

S1:  Vlasov Model: Transverse Vlasov model for a coasting, single species beam 

with electrostatic self-fields propagating in an applied focusing lattice:

Particle Equations of Motion: 

Hamiltonian (see S.M. Lund, lectures on Transverse Particle Equations of Motion):

Poisson Equation:

 + boundary conditions on 

charge, mass 

 axial relativistic factors 

transverse particle coordinate, angle 

single particle distribution

single particle Hamiltonian
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Hamiltonian expression of the Vlasov equation:

In formal dynamics, a “Poisson Bracket” notation is frequently employed: 

Poisson Bracket

Using the equations of motion: 
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Review: Focusing lattices, continuous and periodic 

(simple piecewise constant):

Occupancy

Syncopation Factor

Lattice Period

Solenoid description

carried out implicitly in

Larmor frame 

[see Lund and Bukh, 

PRST- Accel. and Beams 7, 

024801 (2004), Appendix A]
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Continuous focusing

Quadrupole focusing

Solenoidal focusing (in Larmor frame variables)

Example Hamiltonians:
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Review: Undepressed particle phase advance σ
0 
is typically employed to 

characterize the applied focusing strength of periodic lattices:

Undepressed phase advance

x-orbit without space-charge satisfies Hill's equation

2 x 2 Transfer 

Matrix from 
to

Single particle (and centroid) stability requires:

Analogous equations hold in the y-plane
[Courant and Snyder, Annals of Phys.  3, 1 (1958)]
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S2: Vlasov Equilibria: Plasma physics-like approach is to resolve 

the system into an equilibrium + perturbation and analyze stability

Equilibrium constructed from single-particle constants of motion C
i

equilibrium

0

Comments:

Equilibrium is an exact solution to Vlasov's equation that does not change in 

4D phase-space as s advances

- Projections of the distribution can evolve in s in general cases

Particle conversation constraints are in the presence of (possibly s-varying) 

applied  and space-charge forces

-  Highly non-trivial!

-  Only one exact solution known for s-varying focusing: 

the KV distribution to be analyzed shortly in this lecture.  
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// Example: Continuous focusing

no explicit s dependance

0 0

//

Showing that                                  exactly satisfies Vlasov's equation for 

continuous focusing 
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Typical single particle constants of motion:

Transverse Hamiltonian for continuous focusing: 

Canonical angular momentum for rotationally invariant systems: 

Axial kinetic energy for systems with no acceleration: 

More on other classes of constraints later ...

(in Larmor frame variables

  for solenoidal focusing)
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Plasma physics approach to beam physics:
Resolve: 

equilibrium perturbation

Comments:

Attraction is to parallel the impressive successes of plasma physics

- Gain insight into preferred state of nature

Beams are born off a source and may not be close to an equilibrium condition 

- Appropriate single particle constants of the motion unknown for 

    periodic focusing lattices other than the (unphysical) KV distribution

Intense beam self-fields and finite radial extent vastly complicate equilibrium 

description and analysis of perturbations

-  It is not clear if smooth Vlasov equilibria exist in periodic focusing  

- Higher model detail vastly complicates picture!

If system can be tuned to more closely resemble a relaxed, equilibrium, one 

might expect less deleterious effects based on plasma physics analogies

and carry out equilibrium + stability analysis 
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S3: The KV Equilibrium Distribution
[Kapchinskij and Vladimirskij, Proc. Int. Conf. On High Energy Accel., 1959]

Free-space self field solution within the beam (see Appendix A)

Assume a uniform density elliptical beam in a periodic focusing lattice

Particle equations of motion within the beam (Hill's equation if edge radii given):

Line-Charge:

Perveance:number 

density n
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If we regard the envelope radii as specified functions of s, then these equations of 

motion are Hill's equations familiar from elementary accelerator physics:

Suggests Procedure:

Calculate Courant-Snyder invariants under assumptions made

Construct a distribution function of Courant-Snyder invariants that generates 

the uniform density elliptical beam projection assumed

-  Nontrivial step: guess and show that it works

Resulting distribution will be an equilibrium that does not change 4D form as 

a function of s
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Review (1): The Courant-Snyder invariant of Hill's equation

[Courant and Snyder, Annl. Phys. 3, 1 (1958)]

Hill's equation describes a zero space-charge particle orbit in linear applied 

focusing fields:

As a consequence of Floquet's theorem, the solution can be cast in phase-

amplitude form:

where is the periodic solution to

   is a phase function given by 

 and    are constants set by initial conditions at
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Review (2): The Courant-Snyder invariant of Hill's equation

From this formulation it follows immediately that

or

square and add equations to obtain the Courant-Snyder invariant

 Simplifies interpretation of dynamics 

 Extensively used in accelerator physics 
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Phase-amplitude description of particles evolving within a uniform density beam:

Phase-amplitude form of x-orbit equations:

where

identifies the Courant-Snyder invariant

initial conditions yield:

Analogous equations hold for the y-plane
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The KV envelope equations:

Define maximum Courant-Snyder invariants:

These values must correspond to the beam-edge:

The equations for w
x
 and w

y
 can then be rescaled to obtain the familiar 

KV envelope equations for the matched beam envelope
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Use variable rescalings to denote x- and y-plane Courant-Snyder invariants as:

Kapchinskij and Vladimirskij constructed a delta-function distribution of a linear 

combination of these Courant-Snyder invariants that generates the correct 

uniform density elliptical beam needed for consistency with the assumptions:

 Delta function means the sum of the x- and y-invariants is a constant 

 Other forms would not generate the needed uniform density elliptical

   beam projection  
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The KV equilibrium is constructed from the Courant-Snyder invariants:

KV equilibrium distribution:

This distribution generates (see proof in Appendix B) the correct uniform density

elliptical beam:

Dirac delta function

Obtaining this form consistent with the assumptions

 demonstrates full self-consistency of the KV equilibrium distribution.

-  Full 4-D form of the distribution does not evolve in s

-  Projections of the distribution can (and generally do!) evolve in s
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Comment on notation of integrals:

- 2nd forms useful for systems with azimuthal spatial or annular symmetry 

Spatial

Angular

Cylindrical Coordinates:

Angular

Cylindrical Coordinates:
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Comment on notation of integrals (continued):

Axisymmetry simplifications

Spatial: for some function

Cylindrical Coordinates:

Angular

Cylindrical Coordinates:

Angular: for some function
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Moments of the KV distribution can be calculated directly from the distribution 

to further aid interpretation:

Envelope edge radius:

rms edge emittance (maximum Courant-Snyder invariant):

Full 4D average:

Restricted angle average:

Coherent flows (within the beam, zero otherwise):

Angular spread (x-temperature, within the beam, zero otherwise):
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Summary of 1st and 2nd order moments of the KV distribution:

All 1st and 2nd order

moments not listed 

vanish, i.e., 
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Canonical transformation illustrates KV distribution structure:

[Davidson, Physics of Nonneutral Plasmas, Addison-Wesley (1990), and Appendix B]

Phase-space transformation:

Courant-Snyder invariants in the presence of beam space-charge are then simply:

and the KV distribution takes the simple, symmetrical form:

from which the density and other projections can be more easily (see Appendix

B) calculated:
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KV Envelope equation

The envelope equation reflects low-order force balances

Applied

Focusing

Lattice

Space-Charge

Defocusing

Perveance

Thermal

Defocusing

Emittance

Envelope equation is a projection of the 4D invariant distribution

Most important basic design equation for transport lattices with high space-charge 

intensity

- Simplest consistent design equations incorporating applied focusing,

 space-charge defocusing, and thermal defocusing forces

- Starting point of almost all practical machine design!

Instabilities of envelope equations are well understood and real (to be covered: 

lectures on Centroid and Envelope Description of Beams)

- Must be avoided for reliable machine operation

Terms:

Matched Solution
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Solenoidal Focusing FODO Quadrupole Focusing

The matched solution to the KV envelope equations reflects the symmetry of the 

focusing lattice and must in general be calculated numerically

Parameters

The matched beam is the most radially compact solution to the envelope 

equations rendering it highly important for beam transport
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Beam symmetries of a matched KV equilibrium beam in a periodic FODO 

transport lattice

x-y

x-x'

y-y'

Projection

area:

area:

area:

(CS Invariant)

(CS Invariant)
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KV model shows that particle orbits in the presence of space-charge can

be strongly modified – space charge slows the orbit response: 

Matched envelope:

Equation of motion for x-plane “depressed” orbit in the presence of space-charge:

All particles have the same value of depressed phase advance:
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Depressed particle x-plane orbits within a matched KV beam in a periodic 

FODO quadrupole channel for the matched beams previously shown

Solenoidal Focusing (Larmor frame orbit):

FODO Quadrupole Focusing:
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Depressed phase advance within a matched beam

Normalized space charge strength Cold Beam

(space-charge dominated)

Warm Beam

(kinetic dominated)

Depressed particle phase advance provides a convenient 

measure of space-charge strength
For simplicity take (plane symmetry in average focusing and emittance)
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For example matched envelope presented earlier:

Undepressed phase advance:

Depressed phase advance:

Solenoidal Focusing (Larmor frame orbit):

repeat periods
4.5

22.5

22.5 periods

4.5 periods

Periods for

360 degree 

phase advance
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The rms equivalent beam model helps interpret general beam evolution in

terms of an “equivalent” local KV distribution

For the same focusing lattice, replace any beam charge  density by a 

uniform density KV beam in each axial slice (s) using averages calculated from 

the actual “real” beam distribution with:

rms equivalent beam:

real distribution
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Comments on rms equivalent beam concept:

The emittances will generally evolve in s

- Means that the equivalency must be recalculated in every slice as the

   emittances evolve

- For reasons to be analyzed later (lectures on Kinetic Stability of Beams), 

   this evolution is often small 

Concept is highly useful

- KV equilibrium properties well understood and are approximately correct

   to model lowest order “real” beam properties



 

SM Lund, USPAS 2006 Transverse Equilibrium Distributions 37

Sacherer expanded the concept of rms equivalency by showing that the 

equivalency works exactly for beams with elliptic symmetry space-charge

[Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971), J.J. Barnard, Intro. Lectures]

For any beam with elliptic symmetry charge density in each transverse slice:

the KV envelope equations

remain valid when (averages taken with the full distribution): 

The emittances must, in general, evolve in s under this model 

(see SM Lund lectures on Transverse Kinetic Stability)

Based on:

see J.J. Barnard intro. lectures
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Further comments on the KV equilibrium: Distribution Structure

Equilibrium distribution:

Forms a highly singular hyper-shell in 4D phase-space

Singular distribution has large “Free-Energy” to drive many instabilities

- Low order envelope modes are physical and highly important 

(see lectures on Centroid and Envelope Descriptions of Beams)

Perturbative analysis shows strong collective instabilities

- Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983)

- Higher order instabilities (collective modes) have unphysical aspects 

due to (delta-function) structure of distribution and must be applied 

with care (see lectures on Kinetic Stability of Beams)

- Instabilities can cause problems if the KV distribution is employed 

as an initial beam state in self-consistent simulations

Schematic:
4D singular hyper-shell surface
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Preview: lecture on Centroid and Envelope Descriptions of Beams

Instability bands of the KV envelope equation are well understood in

 periodic focusing channels and must be avoided in machine operation

[S.M. Lund and B. Bukh, PRSTAB 024801 (2004)]

Solenoid (     = 0.25) Quadrupole FODO (     = 0.70)

Envelope Mode Instability Growth Rates
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Further comments on the KV equilibrium: 2D Projections

All 2D projections of the KV distribution are uniformly filled ellipses

Not very different from what is often observed in experimental measurements and 

self-consistent simulations of stable beams with strong space-charge

Falloff of distribution at “edges” can be rapid, but smooth, for strong space-charge
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Coherent (flow): Incoherent (temperature):

Angular spreads within the beam:

Further comments on the KV equilibrium:

Angular Spreads: Coherent and Incoherent

Coherent flow required for periodic focusing to conserve charge

Temperature must be zero at the beam edge since the distribution edge is sharp

Parabolic temperature profile is consistent with linear grad P pressure forces in a fluid 

model interpretation of the (kinetic) KV distribution
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Further comments on the KV equilibrium:The KV distribution is the only known exact equilibrium solution for linear 

periodic focusing channels that is valid for finite space-charge:

Low order properties of the distribution are physically appealing 

Illustrates relevant Courant-Snyder invariants in simple form

- Later arguments demonstrate that these invariants should be a reasonable

          approximation for beams with strong space charge

Strong Vlasov instabilities associated with the KV model render the distribution 

inappropriate for use in high levels of detail:

Instabilities are not all physical and render interpretation of results difficult

- Difficult to separate physical from nonphysical effects in simulations

Possible Research Problem (unsolved in 40+ years!):

Can a valid Vlasov equilibrium be constructed for a smooth, nonuniform density 

distribution in a linear, periodic focusing channel?

Not clear what invariants can be used or if any can exist

- Nonexistence proof would also be significant

Lack of a smooth equilibrium would not imply that real machines cannot work!
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Because of a lack of theory for a smooth, self-consistent distribution that would 

be more physically appealing than the KV distribution we will examine smooth

distributions in the idealized continuous focusing limit (after an analysis of the 

continuous limit of the KV theory):

Allows more classic “plasma physics” like analysis 

Illuminates physics of intense space charge 

Lack of continuous focusing in the laboratory will prevent over generalization 

of results obtained
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S4:  Continuous Focusing limit of the KV Equilibrium Distribution

Continuous focusing, symmetric beam

envelope equation reduces to

Particle orbit in the beam:

Space-charge tune depression (rate of phase advance same everywhere, L
p
 arb.) 

Undepressed betatron wavenumber

Depressed 

betatron wavenumber
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Continuous Focusing KV Equilibrium – 

Undepressed and depressed particle orbits

envelope

undepressed

depressed

Particle Orbits in Beam

Much simpler in details than the periodic focusing case,

but qualitatively similar in that space-charge “depresses” the

rate of particle phase advance 
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Continuous Focusing KV Beam – Equilibrium Distribution Form

Using

for the beam line charge and 

the full elliptic beam KV distribution can be expressed as 

where 
 --  Hamiltonian

 --  Hamiltonian at beam edge
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Equilibrium distribution

then it is straightforward to explicitly calculate (see homework problems)

Density:

Temperature:

Density Temperature
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Continuous Focusing KV Beam – Comments

For continuous focusing,           is a single particle constant of the motion (see 

problem sets), so it is not surprising that the KV equilibrium form reduces to a 

delta function form of 

For non-continuous focusing channels there is no simple relation between 

Courant-Snyder type invariants and  

Because of the delta-function distribution form, all particles in the continuous 

focusing KV beam have the same transverse energy with  

Several textbook treatments of the KV distribution derive continuous focusing 

versions and then just write down (if at all) the periodic focusing version based on 

Courant-Snyder invariants.   This can create a false impression that the KV 

distribution is a Hamiltonian-type invariant in the general form.  
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S5: Equilibrium Distributions in Continuous Focusing Channels 

Take

Real transport channels have s-varying focusing functions

For a rough correspondence to physical lattices take:

A valid family of equilibria can be constructed for any choice of function:

φ must be calculated consistently from the nonlinear Poisson equation:

Solutions generated will be steady-state 

It can be shown that the Poisson equation only has solutions with 

The Hamiltonian is only equivalent to the Courant-Snyder invariant in continuous 

focusing.  In periodic focusing channels and  vary in s and the 

Hamiltonian is not a constant of the motion.
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The axisymmetric Poisson equation simplifies to:

Introduce a streamfunction

then

and system axisymmetry can be exploited to calculate the beam density as 

Then the Poisson equation can be recast in terms of the stream function as 
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To characterize a choice of equilibrium function , the (transformed)

Poisson equation must be solved 

Equation is, in general, highly nonlinear rendering the procedure difficult

Some general features of equilibria can still be understood in terms of moments 

Apply rms equivalent beam picture
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Moment properties of continuous focusing equilibrium distributions 

Equilibria satisfy the rms equivalent matched beam envelope equation:

where

Describes average radial force balance of particles



 

SM Lund, USPAS 2006 Transverse Equilibrium Distributions 53

Parameters used to define

should be cast in terms of

for use in accelerator applications.  The rms equivalent beam equations can be 

used to carry out needed parameter eliminations. Such eliminations can be highly

nontrivial due to the nonlinear form of the equations.

A kinetic temperature can also be calculated

which is also related to the emittance,  
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Choices of continuous focusing equilibrium distributions: 

Common choices for analyzed in the literature:

1) KV (already covered)

2) Waterbag (to be covered) 

[see M. Reiser, Charged Particle Beams, (1994)]

3) Thermal (to be covered) 

[see M. Reiser; Davidson, Noneutral Plasmas,  1990]

Infinity of choices can be made for an infinity of papers!

 Fortunately, range of behavior can be understood with a few reasonable choices
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S6: Continuous Focusing: The Waterbag Equilibrium Distribution:

[see Reiser, Theory and Design of Charged Particle Beams, Wiley (1994)]

Waterbag distribution:

The physical edge radius       of the beam will be related to the edge Hamiltonian:

Edge  

Hamiltonian

Employing the general formulation, the Poisson equation for this 

choice can be analytically solved simplifying analysis. 

Details of Waterbag analysis to be included in later editions of notes.  
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1) Density profile at fixed line charge and focusing strength
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Density

Profile

Edge of 

distribution

in phase-space

2) Phase-space boundary at fixed line charge and focusing strength
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Scaled parameters for examples
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S7: Continuous Focusing: The Thermal Equilibrium Distribution:

[see Davidson, Physics of Nonneutral Plasma, Addison Wesley (1990) and

 Reiser, Theory and Design of Charged Particle Beams, Wiley (1994)]

In an infinitely long continuous focusing channel, collisions will eventually relax 

the beam to thermal equilibrium.   The Fokker-Planck equation predicts that the 

unique Maxwell-Boltzmann distribution describing this limit is:

Thermodynamic temperature 

(energy units)

Beam propagation time in transport channel is generally short relative to collision time,

inhibiting full relaxation

Collective effects may enhance relaxation rate 

- Wave spectrums likely large for real beams and enhanced by 

  transient and nonequilibrium effects

- Random errors acting on system may enhance and lock-in phase mixing 

single particle Hamiltonian of beam 

in rest frame (energy units)
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Continuous focusing thermal equilibrium distribution

Analysis of the rest frame transformation shows that the 2D Maxwell-Boltzmann 

distribution (careful on frame for temperature definition!) is:

The density can then be conveniently calculated in terms of a scaled stream 

function:

Temperature 

(energy units, lab frame)

 (reference choice)

on-axis density

and the x- and y-temperatures are equal and spatially uniform with:
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Scaled Poisson equation for continuous focusing thermal equilibrium

To describe the thermal equilibrium density profile, the Poisson equation must be 

solved.   In terms of the scaled streamfunction: 

Here,  
Debye length formed  

from the peak, on-axis

beam density

Scaled radial coordinate

in rel. Debye lengths

Plasma frequency formed

from on-axis beam density

Dimensionless parameter relating

the ratio of applied to space-charge

defocusing forces

Equation is highly nonlinear and must, in general, be solved numerically

Scaled solutions depend only on the single dimensionless parameter ∆
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Numerical solution of scaled thermal equilibrium Poisson equation in

terms of a normalized  density

Equation is highly nonlinear and must, in general, be solved numerically

- Dependance on ∆ is very sensitive

- For small ∆, the beam is nearly uniform in the core

Edge fall-off is always in a few Debye lengths when ∆ is small

- Edge becomes very sharp at fixed beam line-charge 
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Parameters constraints for the thermal equilibrium beam 

Parameters employed in to specify the equilibrium are (+ kinematic 

factors): 

Parameters preferred for accelerator applications: 

Needed constraints can be calculated directly from the equilibrium: 

Also useful,  

Integral function

of        only
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These constraints must, in general, be solved numerically 

 Useful to probe system sensitivities in relevant parameters

Examples:

1) rms equivalent beam tune depression as a function of ∆

Small tune depression corresponds to extremely small values of ∆
- Special numerical methods must be employed to calculate

R.H.S function 

of ∆ only
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2) Density profile at fixed line charge and focusing strength

Density profile changes with scaled T 

- Low values yields a flat-top   => 

- High values yield a Gaussian like profile  => 
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3) Distribution contours at fixed line charge and focusing strength

Particles will move approximately force-free till approaching the edge where it is 

rapidly bent back (see Debye screening analysis this lecture)

Radial 

scales 

change
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Scaled parameters for examples 2) and 3)
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Comments on continuous focusing thermal equilibria

From these results it is not surprising that the KV model works well for real beams 

with strong space-charge (i.e, rms equivalent              small) since the edges of a 

smooth thermal distribution become sharp  

Thermal equilibrium likely overestimates the edge with since T = const, whereas a 

real distribution likely becomes colder near the edge

However, the beam edge contains strong nonlinear terms that will cause deviations 

from the KV model  

Nonlinear terms can radically change the stability properties (stabilize fictitious 

higher order KV modes)

Smooth distributions contain a spectrum of particle oscillation frequencies that are 

amplitude dependent
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S8: Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam

[Davidson, Physics of Nonneutral Plasmas, Addison Wesley (1990)]

We will show that space-charge and the applied focusing forces of the lattice 

conspire together to Debye screen interactions in the core of a beam with high 

space-charge intensity 

Will systematically derive the Debye length employed in the intro lectures of J.J. 

Barnard

The applied focusing forces are analogous to a stationary neutralizing species in

a plasma

// Review:

Free-space field of a “bare” test line-charge at the origin 

solution (use Gauss' theorem) shows long-range interaction

//
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Place a small test line charge at r = 0 in a thermal equilibrium beam:

Thermal Equilibrium Test Line-Charge
Set:

Thermal Equilibrium potential with no test line-charge

Perturbed potential from test line-charge

Assume thermal equilibrium adapts adiabatically to the test line-charge:

Yields:

Assume a relatively cold beam so the density is flat near the test line-charge:
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Debye radius formed from peak,

on-axis beam density

Derive a general solution by connecting solution very near the test charge with the 

general solution for r nonzero:

Near solution:

This gives:

Negligible  --->

The free-space solution can be immediately applied:
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Connection and General Solution:

The delta-function term vanishes giving:

This is a modified Bessel equation of order 0 with general solution:

Modified Bessel Func, 1st kind

Modified Bessel Func, 2nd kind

General Exterior Solution:

Use limiting forms:
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General solution shows Debye screening of test charge in the core of the beam:

Order Zero

Modified Bessel Function

Screened interaction does not require overall charge neutrality!

- Beam particles redistribute to screen bare interaction

- Beam behaves as a plasma and expect similar collective waves etc.

Same result for all smooth equilibrium distributions and in 1D, 2D, and 3D 

- Reason why lower dimension models can get the “right” answer for

   collective interactions in spite of the Coulomb force varying with dimension

Explains why the radial density profile in the core of space-charge dominated beams 

are expected to be flat

Comparison shows that we must choose for connection to the near solution and 

regularity at infinity:
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S9: Continuous Focusing: The Density Inversion Theorem

Shows x and x' dependancies are strongly connected in an equilibrium

For:

calculate the beam density

differentiate:

Assume that n(r) is specified, then the Poisson equation can be integrated:

bounded distribution

0
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For n(r) = const

This suggests that ψ(r) is monotonic in r when  d n(r)/dr is monotonic.  Apply the 

chain rule:

For specified monotonic n(r) the density inversion theorem can be applied with 

the Poisson equation to calculate the corresponding equilibrium 

Density Inversion Theorem

Comments on density inversion theorem:
Shows that the x and x' dependance of the distribution are inextricably linked for an 

equilibrium distribution function

- Not so surprising -- equilibria are highly constrained

If  then the kinetic stability theorem (see Kinetic Stability 

lectures) shows that the equilibrium is also stable
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// Example: Application of the inversion theorem to the KV equilibrium

// 

use:

Expected 

KV form

property of delta-function:

root of f(x)

Similar application of derivatives with respect to Courant-Snyder invariants 

can “derive” the needed form for the KV distribution of an elliptical beam 

without guessing. 
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The KV and continuous models are the only (or related to simple transforms 

thereof) known exact beam equilibria.  Both suffer from idealizations that render 

them inappropriate for use as initial distribution functions for modeling of real 

accelerator systems:

KV distribution has an unphysical structure giving rise to well known instabilities 

with unphysical manifestations

Continuous focusing is inadequate to model real accelerator lattices with periodic 

or s-varying focusing forces

There is much room for improvement in this area, including study if smooth 

equilibria exist in periodic focusing and implications if no exact equilibria exist.

S10: Comments on the plausibility of smooth,  Vlasov equilibria in 

periodic transport channels
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Large envelope flutter associated with strong focusing can result in a rapid high-

order oscillating force imbalance acting on edge particles of the beam 

Temperature Flutter

Elliptical rms Equivalent Beam

r
x

r
y

Example Systems (r
max

/r
min

)2

AG Trans: σ
0

= 60o ~ 2.5

AG Trans:  σ
0
 = 100o ~ 4.9

Matching Section ~ 15 Possible

Temperature asymmetry in beam will rapidly fluctuate with lattice periodicity 

- Converging plane => Warmer 

- Diverging plane => Colder

Collective plasma wave response slower than lattice frequency

- Beam edge will not be able to adapt rapidly enough

- Collective waves will be launched from lack of local force balance near the edge

Characteristic Plasma Frequency of Collective Effects

Continuous Focusing Estimate
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The continuous focusing equilibrium distribution suggests that varying Debye 

screening together with envelope flutter would require a rapidly adapting beam 

edge in a smooth, periodic equilibrium beam distribution

Continuous Focusing Thermal Equilibrium Beam

Self Consistent Beam Edge
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It is clear from these considerations that if smooth “equilibrium” beam 

distributions exist for periodic focusing, then they are highly nontrivial

Real beams are born off a source that can be simulated 

- Propagation length can be relatively small in linacs 

Transverse confinement can exist without an equilibrium 

- Particles can turn at large enough radii forming an edge

- Edge can oscillate from lattice period to lattice period

   without pumping to large excursions

Would a nonexistence of an equilibrium distribution be a problem:

Might not preclude long propagation with preserved 

statistical beam quality

Even approximate equilibria would help sort out complicated processes:

Reduce transients and fluctuations can help understand processes in simplest form

- Allows more “plasma physics” type analysis and advances

Beams in Vlasov simulations are often observed to “settle down” to a fairly regular 

state after an initial transient evolution 

- Extreme phase mixing leads to an effective relaxation
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These slides will be corrected and expanded for reference and any future 

editions of the US Particle Accelerator School class:

Beam Physics with Intense Space Charge, by J.J. Barnard and S.M. Lund

Corrections and suggestions are welcome.  Contact:

SMLund@lbl.gov

Steven M. Lund 

Lawrence Berkeley National Laboratory

BLDG 47 R 0112

1 Cyclotron Road 

Berkeley, CA 94720-8201

 (510) 486 – 6936

Please do not remove author credits in any redistribuitons of class material.
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Transverse Centroid and Envelope Model: Outline
Overview

Derivation of Centroid and Envelope Equations of Motion

Centroid Equations of Motion

Envelope Equations of Motion

Matched Envelope Solutions 

Envelope Perturbations

Envelope Modes in Continuous Focusing 

Envelope Modes in Periodic Focusing

Transport Limit Scaling 

Centroid and Envelope Descriptions via 1st order Coupled Moment Equations

ReferencesComments:

Some of this material related to J.J. Barnard lectures:

-  Transport limit discussions  (Introduction)

-  Transverse envelope modes (Cont. Focusing Envelope Modes and Halo)

- Longitudinal envelope evolution (Longitudinal Beam Physics III)

-  3D Envelope Modes in a Bunched Beam (Cont. Focusing Envelope Modes and Halo)

Specific topics will be covered in more detail here
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1) Overview

2) Derivation of Centroid and Envelope Equations of Motion
Statistical averages

Particle equations of motion

Distribution assumptions

Self-field calculation

Coupled centroid and envelope equations of motion

3) Centroid Equations of Motion
Simple limits of centroid equations

Effect of image charges

Centroid stability

4) Envelope Equations of Motion
Properties of terms

Matched and mismatched beams 

Perturbations

5) Matched Envelope Solution
Construction of matched solution

Examples

Transverse Centroid and Envelope Model: Detailed Outline
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Detailed Outline - 2 

6) Envelope Perturbations
Perturbed equations

Driving perturbations and modes

7) Envelope Modes in Continuous Focusing
Symmetries

Breathing and quadrupole modes

8) Envelope Modes in Periodic Focusing
Overview

Solenoidal modes

Quadrupole modes

9) Transport Limit Scaling Based on Envelope Models  (see hand written notes)

Simple estimates of matched envelope solutions

Ideal current limits

10) Centroid and Envelope Descriptions via 1st Order Coupled Moment

      Equations      (to be covered in future editions)

Motivation

Example

References
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S1: Overview 

Centroid:

Envelope:

x- and y-coordinates

of beam center of mass

x- and y-principal axis radii 

of an elliptical beam envelope

Analyze transverse centroid and envelope properties of an unbunched            

beam
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Oscillations in the statistical beam centroid and envelope radii are the 

lowest-order collective responses of the beam

Centroid Oscillations:  Associated with errors and are purposefully suppressed to 

the level possible

Error Sources: 

- Beam distribution

- Dipole bending terms from applied field optics

- Imperfect mechanical alignment

Exception: When the beam is kicked (insertion or extraction) into our out of a 

transport channel as is often done in rings

Envelope Oscillations: Can have two components in periodic lattices

Matched Envelope: Periodic flutter synchronized to periodic focusing structure to 

produce net focusing

Mismatched Envelope: Excursions deviate from matched flutter motion and are 

seeded/driven by errors

Maximum radial confinement of the maximum beam-edge excursions are desired for 

economical transport

- Reduces cost by Limiting material volume needed to transport an intense beam 
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Mismatched beams have larger envelope excursions and have more stability 

problems since mismatch adds another source of free energy that can drive

statistical increases in particle amplitudes (Halo, see J.J. Barnard Lectures on Halo)

Example:  FODO Quadrupole Transport Channel

 Larger machine aperture is needed to confine a mismatched beam
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Centroid and Envelope oscillations are the most important collective modes of an 

intense beam

Force balances based on matched beam envelope equation predict scaling of 

transportable beam parameters

- Used to design transport lattices

Instabilities in beam centroid and/or envelope oscillations prevent reliable 

transport

- Parameter locations of instability regions should be understood and avoided in 

machine design

Although it is necessary to design to avoid envelope and centroid instabilities, it 

is not alone sufficient for effective machine operation

Higher-order kinetic and fluid instabilities not expressed in the low-order 

envelope models can degrade beam quality and control and must also be 

evaluated 

- To be covered (see S.M. Lund, lectures on Kinetic Stability)
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S2: Derivation of Transverse Centroid and Envelope Equations of Motion 

Analyze centroid and envelope properties of an unbunched                       beam

Transverse Statistical Averages:

Let N be the number of particles in a thin axial slice of the beam at axial 

coordinate s.

Equivalent averages can be defined in terms of the 

particles or the transverse Vlasov distribution function:

particles:

distribution:

 Averages can be generalized to include axial momentum spread
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Consistent with earlier analysis, take:

Transverse Particle Equations of Motion

Assume:

Unbunched beam

No axial momentum spread

Linear applied focusing fields

Possible acceleration

Various apertures are possible.   Some simple examples:

Round Pipe Elliptical Pipe Hyperbolic Sections

Linac magnetic quadrupoles,

acceleration cells, ....

Dispersive rings in drifts, 

magnetic optics, ....
Electric quadrupoles



SM Lund, USPAS, 2006 11Transverse Centroid and Envelope Descriptions of Beam Evolution

Review: Focusing lattices we will take in examples: Continuous and 

piecewise constant periodic solenoid and quadrupole doublet 

Occupancy

Syncopation Factor

Lattice Period

Solenoid description

carried out implicitly in

Larmor frame 

[see Lund and Bukh, 

PRST- Accel. and Beams 7, 

024801 (2004), Appendix A]
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Distribution Assumptions

To lowest order, linearly focused intense beams are expected to be nearly uniform 

in density within the core of the beam out to an edge where the density falls 

rapidly to zero

constant density 

in the beam:
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Self-Field Calculation

Temporarily, we will consider an arbitrary beam charge distribution within an 

arbitrary aperture to formulate the problem.

Electrostatic field of a line charge in free-space

line charge

coordinate of charge

Resolve the field of the beam into direct (free space) and image terms:

Direct Field

Image Field

beam charge

density

beam image

charge density

and superimpose free-space

solutions for direct and image contributions
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Direct Field:

For a uniform density elliptical beam the direct contribution is as calculated 

for the KV equilibrium, free-space self-field calculation

- see S.M. Lund lectures on Transverse Beam Equilibria 

constant density 

in the beam:
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Image Field:

Image structure depends on the aperture.  Assume a round pipe for simplicity.

image charge

image location

superimpose all images of beam:

 Difficult to calculate even for a uniform density beam
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Expand using complex coordinates starting from the general image expression:

Examine limits of the image field:

1) On-axis line charge:

Generates nonlinear field at position of direct charge

2) Centered, uniform density elliptical beam:

The linear (n=2) components of this expansion give:

 Rapidly vanish (higher order terms more rapid) as beam becomes more round
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Expand using complex coordinates starting from the general image expression:

 Use complex coordinates to simplify calculation

   E.P. Lee, E. Close, and L. Smith, Nuc. Instr. Meth, 1126 (1987)

Expressions become even more complicated with simultaneous

    x- and y-displacements and more complicated aperture geometries

3) Elliptical beam with a small displacement along the x-axis:
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Comments on images:

Sign is generally such that it will tend to increase beam displacements

- Also weaker focusing corrections for an elliptical beam

Can be very difficult to calculate explicitly

- Even for simple case of circular pipe

- Special cases of simple geometry formulas can give idea on scaling

- Generally suppress just by making the beam small relative to characteristic 

   dimensions and keeping the beam near-axis

Depend strongly on the aperture geometry

- Generally varies as a function of s in the machine

Round Pipe Elliptical Pipe Hyperbolic Sections
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Consistent with the assumed structure of the distribution 

(uniform density elliptical beam), denote:

Beam Centroid:

Envelope Edge Radii:

Coupled centroid and envelope equations of motion

Coordinates with respect to centroid:

With the assumed uniform elliptical beam, all moments can be calculated 

in terms of:
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To derive centroid equations, first use the self-field resolution for a uniform 

density beam, then the equations of motion for a particle within the beam can be 

expressed as:

Direct Terms Image Termsperveance:

average equations using: etc., to obtain:

Centroid Equations:

               will generally depend on:                  and 
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To derive equations of motion for the envelope radii, first subtract the X centroid 

equation from the x-particle equation of motion to obtain:

Differentiate the equation for the envelope radius:

Define (motivated the KV equilibrium results) a statistical rms edge emittance:

Differentiate the equation for        again and use the emittance definition:

and then employ the equations of motion to eliminate        in               to obtain:
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Envelope Equations:

               will generally depend on:                  and 

Comments:
Comments on Centroid/Envelope equations:

Centroid and envelope equations are coupled and must be solved 

simultaneously

Image terms contain nonlinear terms that can be difficult to evaluate explicitly

- Aperture geometry changes image correction

The formulation is not self-consistent because a charge profile is assumed 

- Uniform density choice motivated by KV results and Debye screening

- The assumed distribution form not evolving represents a fluid model closure

Constant (normalized when accelerating) emittances are generally assumed 

specified by “acceleration schedule”
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S3: Centroid Equations of Motion

Neglect image charge terms, then the centroid equation of motion becomes:

Usual Hill's equation with additional acceleration term

Single particle form and usual phase amplitude methods, Courant-Snyder 

invariants, and stability bounds can be immediately applied

Example: FODO channel centroid evolution

centroid stability, 1st stability condition

lattice/beam

parameters:Mid-drift

launch:
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The reference orbit is ideally tuned for zero centroid offset.  But there will always 

be driving errors that will cause the centroid oscillations to accumulate with beam 

propagation distance:

nth quadrupole gradient error (1 = no error)

nth quadrupole transverse displacement error

Example: FODO channel centroid with quadrupole displacement errors

same lattice

as previous

solid    – with errors

dashed –    no errors(uniform dist)

Driving Errors:
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Errors will result in a characteristic random walk increase in oscillation amplitude 

due to the driving terms.   

Control by:

 Synthesize small applied dipole fields to regularly steer the centroid back on-axis

 Fabricate and align focusing elements with higher precision

 Employ a sufficiently large aperture to contain the oscillations and limit 

   detrimental nonlinear image charge effects

Economics dictates the optimal strategy
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Model the beam as a displaced line-charge.  Then the equations of motion are 

modified as:

Image Effects:

Example: FODO channel centroid with image charge corrections

same lattice

as previous

solid    – with images

dashed –    no images

linear correction Nonlinear correction (smaller)
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Main effect appears to be an accumulated phase error of the centroid orbit since, 

generally the centroid error oscillations are not “matched” orbits.  This will 

complicate extrapolations of errors over many lattice periods

Control by:

 Keeping centroid displacements small by correcting

 Make pipe larger

 Generally less problematic than alignment and excitation errors

General Comments:

More detailed analyses show that the coupling of the envelope radii to the centroid

   evolution is often weak

 Fringe fields are more important for accurate calculation of centroid orbits since

   orbits are not part of a matched lattice

- Nonideal orbits are poorly tuned to lattice and become more sensitive to

  the precise phase of impulses

 Over long path lengths many nonlinear terms can influence results 

 Lattice errors are not often known so one must often analyze characteristic 

error distributions to see if centroids measured are consistent with expectations
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S4: Envelope Equations of Motion

Overview

Generally found that couplings to centroid displacements                are weak

- Centroid ideally zero

Envelope eqns are most important in designing transverse focusing systems

- Expresses average radial force balance

- Unfortunately, can be difficult to analyze analytically for scaling

- “Systems” codes generally written using envelope equations, stability 

   criteria, and practical engineering constraints

Instabilities of the envelope equations in periodic focusing lattices must be 

avoided in machine operation

- Instabilities are strong and real

- Represent lowest order “KV” modes of a full kinetic theory 

Previous derivation of envelope equations relied on Courant-Snyder 

invariants in linear applied and self-fields.  Analysis shows that the same 

force balances result for a uniform elliptical beam with no image couplings.

- Debye screening arguments suggest assumed uniform density model taken

should be a good approximation for intense space-charge
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KV/rms Envelope Equations

The envelope equation reflects low-order force balances:

Applied

Focusing

Lattice

Space-Charge

Defocusing

Perveance

Thermal

Defocusing

EmittanceTerms:

Applied

Acceleration

Lattice

The “acceleration schedule” specifies both             and 

then the equations are integrated with: 

normalized emittance conservation

specified perveance
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Reminder: It was shown for a coasting beam that the envelope equations 

remain valid for elliptic charge densities suggesting more general validity

[Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971), J.J. Barnard, Intro. Lectures]

For any beam with elliptic symmetry charge density in each transverse slice:

the KV envelope equations

remain valid when (averages taken with the full distribution): 

Based on:

see J.J. Barnard intro. lectures
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Acts continuously in s, always defocusing

Becomes stronger (relatively to other terms) when the beam expands in cross-

sectional area

Properties of Envelope Equation Terms:

Applied Focusing and Acceleration:

Perveance:

Emittance:

Analogous to single particle orbit terms

Contributions to beam envelope essentially the same as in single particle case

Have strong s dependance, can be both focusing and defocusing

- Act only in focusing elements and acceleration gaps

Acts continuously in s, always defocusing

Becomes stronger (relatively to other terms) when the beam becomes small in 

cross-sectional area

Scaling makes clear why it is necessary to inhibit emittance growth for 

applications where small spots are desired on target
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As the beam expands, the perveance term will eventually dominate:

Free expansion

    Initial conditions:

Space-Charge Dominated:

Emittance        Dominated:

Initial Conditions

[see analytical analysis in: S.M. Lund and B. Bukh, PRSTAB 7, 024801 (2004)]
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S5: Matched Envelope Solution:

Matching involves finding specific initial conditions for the envelope to 

have the periodicity of the lattice:

Neglect acceleration                            or use transformed variables:

Find Values of: Such That:

Typically constructed with numerical root finding from estimated/guessed values

- Can be difficult in practice for complicated lattices, but well posed

Recent iterative technique developed to numerically calculate without root finding

[S.M. Lund, S. Chilton and E.P. Lee, PRSTAB 9, 064201 (2006)]
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Typical Matched vs Mismatched solution for FODO channel:

Matched Mismatched

The matched beam is the most radially compact solution to the envelope 

equations rendering it highly important for beam transport
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Solenoidal Focusing FODO Quadrupole Focusing

The matched solution to the KV envelope equations reflects the symmetry of the

focusing lattice and must in general be calculated numerically

Parameters
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Symmetries of a matched beam are interpreted in terms of a local rms 

equivalent KV beam and moments/projections of the KV distribution 

x-y

x-x'

y-y'

Projection

area:

area:

area:

(CS Invariant)

(CS Invariant)
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S6: Envelope Perturbations:

In the envelope equations set:

Envelope Perturbations: Driving Perturbations:

Mismatch

Perturbations

Matched

Envelope

Amplitudes defined in terms of 

producing small envelope 

perturbations with:

Driving terms and distribution errors drive envelope perturbations 

- Arise from many sources: focusing errors, lost particles, emittance growth, .....
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The matched solution satisfies:
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Linearized Perturbed Envelope Equations:

Homogeneous Equations:
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Vector Form of the Linearized Perturbed Envelope Equations:

Coordinate vector

Coefficient matrix

Driving perturbation vector

Expand solution into homogeneous and particular parts:

homogeneous solution

particular solution
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Homogeneous solution expressible as a map:

Eigenvalues and eigenvectors of map through one period describe normal modes

and stability properties:

Stability Mode Expansion/Launching

Homogeneous Solution:

Describes normal mode oscillations

 Original analysis by Struckmeier and Reiser [Part. Accel. 14, 227 (1984)]

Particular Solution:

 Describes action of driving terms

 Characterize in terms of projections on homogeneous response

Analogous to the 2x2 

analysis of Hill's equation
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Eigenvalue/Eigenvector Symmetry Classes:

Symmetry classes of eigenvalues/eigenvectors:

 Determine normal mode symmetries

 See A. Dragt, Lectures on Nonlinear Orbit Dynamics,

   in Physics of High Energy Particle Accelerators, (AIP Conf. Proc. No. 87, 1982, p. 147)
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Launching conditions for distinct normal modes corresponding to the

eigenvalue classes illustrated:

Pure mode launching conditions:

mode index
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Decoupled Modes
In a continuous or periodic solenoidal focusing channel

with a round matched-beam solution

envelope perturbations are simply decoupled with:

Breathing Mode

Quadrupole Mode
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Decoupled Mode Properties: 
Space charge terms ~ Q only directly expressed in equation for δr+(s) 

Indirectly present in both equations from matched envelope rm(s)

Homogeneous Solution:

Restoring term for δr+(s) larger than for δr-(s)

 - Breathing mode oscillates faster than quadrupole mode

Particular Solution:

Misbalances in focusing and emittance driving terms 

can project onto either mode

- nonzero perturbed κx(s) + κy(s) and εx(s) + εy(s) project onto

breathing mode

- nonzero perturbed κx(s) − κy(s) and εx(s) − εy(s) project onto

quadrupole mode

Perveance driving perturbations project only on breathing mode
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Previous symmetry classes greatly reduce for decoupled modes:

 Previous homogeneous 4x4 solution map:

 

greatly reduces to two independent 2x2 maps:

 

with corresponding eigenvalue problems:

 

Many familiar results from analysis of Hills equation can be immediately 

applied to the decoupled case, for example:

 
mode stability
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Eigenvalue symmetries and launching conditions simplify for decoupled modes

Launching

Condition / Projections

Eigenvalue Symmetry 2:

Unstable, Lattice Resonance

Eigenvalue Symmetry 1:

Stable
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General Mode Limits
Using phase-amplitude analysis can show for any linear focusing lattice:

1) Phase advance of any normal mode satisfies the zero space-charge limit:

2) Pure normal modes evolve with a quadratic phase-space (Courant-

Snyder) invariant in the normal coordinates of the mode
Simply expressed for decoupled modes:

Analogous for coupled modes [See Edwards and Teng applies, IEEE Trans Nuc. Sci. 20, 885 (1973)]

 where
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S7: Envelope Modes in Continuous Focusing

Focusing:

Matched beam:
symmetric beam:

match condition:

depressed phase advance:

one parameter needed for scaled solution:

Decoupled Modes:
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Envelope equations of motion become:

“breathing” mode phase advance

“quadrupole”  mode phase advance

Homogeneous Solution (normal modes):
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Mode Phase Advances Mode Projections
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Green's function solution is fully general.  Insight gained from simplified solutions for 

specific classes of driving perturbations:

Adiabatic 

Sudden

Ramped

Harmonic

Particular Solution (driving perturbations):

Green's function form of solution:

covered in PRSTAB review article 

covered here 
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Continuous Focusing – adiabatic particular solution

For driving perturbations δp+(s) and δp-(s) slow on quadrupole

mode wavelength ~ 2πLp/σ−  the solution is:

Emittance

Emittance

PerveanceFocusing

Focusing

Coefficients of adiabatic 

terms in square brackets“[  ]”
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Continuous Focusing – adiabatic solution coefficients

Relative strength of:

Space-Charge (Perveance)  

Applied Focusing

Emittance

terms vary with space-charge 

depression (σ/σ0) for both 

breathing and quadrupole 

modes. 



SM Lund, USPAS, 2006 55Transverse Centroid and Envelope Descriptions of Beam Evolution

Continuous Focusing – sudden particular solution
For step function driving perturbations of form:

with amplitudes: 

The solution is given by the substitution in the expression for the adiabatic solution:

2x Excursion

Adiabatic

Excursion

For the same amplitude of 

total driving perturbations, 

sudden perturbations result 

in 2x the envelope 

excursion that  adiabatic 

perturbations produce. 

axial coordinate

perturbation applied 
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S8: Envelope Modes in Periodic Focusing Channels

Overview

Much more complicated the continuous limit results

- Lattice can couple to oscillations and destabilize the system

- Broad parametric instability can result

Instability bands calculated will exclude wide ranges of parameter space from 

machine operation

- Exclusion region depends on focusing type
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Focusing:

Matched Beam:

Solenoidal Focusing – Matched Envelope Solution
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Using a transfer matrix approach on undepressed single-particle 

orbits set the strength of the focusing function for specified 

undepressed particle phase advance:

Solenoidal Focusing:
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Solenoidal Focusing –  parametric plots of breathing and quadrupole 

envelope mode phase advances two values of undepressed phase advance
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Solenoidal Focusing –  mode instability bands become wider and stronger 

for smaller occupancy 
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Solenoidal Focusing –  broad ranges of parametric instability are found for 

the breathing and quadrupole bands that must be avoided in machine 

operation 
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Solenoidal Focusing – parametric mode properties of band oscillations
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Focusing:

Matched Beam:

Quadrupole Doublet Focusing – Matched Envelope Solution

FODO and Syncopated Lattices
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Using a transfer matrix approach on undepressed single-particle 

orbits set the strength of the focusing function for specified 

undepressed particle phase advance:

Quadrupole Focusing:
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Quadrupole Focusing –  parametric plots of breathing and quadrupole 

envelope mode phase advances two values of undepressed phase advance
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Quadrupole Focusing –  mode instability bands vary little/strongly with 

occupancy for FODO/syncopated lattices
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Quadrupole Focusing –  broad ranges of parametric instability are found 

for the breathing and quadrupole bands that must be avoided in machine

operation 

FODO Lattice Syncopated Lattice
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Quadrupole Focusing –  parametric mode properties of band oscillations 
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Quadrupole Focusing –  mode structure varies strongly with mode phase 

and the location in the lattice (FODO example)

generally not exact

breathing symmetry

generally not exact

quadrupole symmetry
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generally not exact

breathing symmetry

generally not exact

quadrupole symmetry
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Summary: Envelope band instabilities and growth rates for periodic 

solenoidal and quadrupole doublet focusing lattices

[S.M. Lund and B. Bukh, PRSTAB 024801 (2004)]

Solenoid (     = 0.25) Quadrupole FODO (     = 0.70)

Envelope Mode Instability Growth Rates
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S9: Transport Limit Scaling Based on Envelope Models

See Handwritten Notes
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S8: Centroid and Envelope Descriptions via 1st Order Coupled 

Moment Equations

To include in future editions of notes
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Transverse Kinetic Stability: Outline

Overview: Machine Operating Points

Overview: Collective Modes and Transverse Kinetic Stability

Linearized Vlasov Equation

Collective Modes on a KV Equilibrium Beam

Global Conservation Constraints

Kinetic Stability Theorem

rms Emittance Growth and Nonlinear Fields 

rms Emittance Growth and Nonlinear Space-Charge Fields  

Uniform Density Beams and Extreme Energy States

Collective Relaxation and rms Emittance Growth

Phase Mixing and Landau Damping in Beams

References
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1) Overview: Machine Operating Points
Notions of beam stability

Tiefenback experimental results for quadrupole transport 

2) Overview: Collective Modes and Transverse Kinetic Stability
Possibility of collective internal modes

Vlasov model review

Plasma physics approach to beam physics

3) The Linearized Vlasov Equation
Equilibrium and perturbations 

Linear Vlasov equation 

Method of Characteristics 

Discussion

4) Collective Modes on a KV Equilibrium Beam
KV equilibrium

Linearized equations of motion 

Solution of equations 

Mode properties

Physical mode components based on fluid model

Periodic focusing results

Transverse Kinetic Stability: Detailed Outline
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Detailed Outline - 2 

5) Global Conservation Constraints
Conserved quantities

Implications

6) Kinetic Stability Theorem
Effective free energy 

Perturbation bound

7) rms Emittance Growth and Nonlinear Forces
Equations of motion

Coupling of nonlinear forces to rms emittance evolution

8) rms Emittance Growth and Nonlinear Space-Charge Forces

Self-field energy

rms equivalent beam forms

Wangler's theorem
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Detailed Outline - 3 

9) Uniform Density Beams and Extreme Energy States
Variational formulation

Self-field energy minimization

10) Collective Relaxation and rms Emittance Growth
Conservation constraints

Relaxation processes

Emittance growth bounds from space-charge nonuniformities

11) Phase Mixing and Landau Damping in Beams

References
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S1:  Overview: Machine Operating Points 

Lowest Order: 

1. Stable single-particle centroid 

Next Order: 

2. Stable rms envelope

Higher Order: 

3. “Stable” Vlasov description

Transport of a relatively smooth initial beam distribution can fail or 

become “unstable” within the Vlasov model for several reasons:

� Collective modes internal to beam become unstable and grow

- Large amplitudes can lead to statistical (rms) beam emittance growth

� Excessive halo generated

-  Increased statistical beam emittance and particle losses

� Combined processes above

Good transport of a single component beam with intense space-charge 

described by a Vlasov-Poisson type model requires:
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Transport limits in periodic (FODO) quadrupole lattices that result from 

higher order processes have been measured in the SBTE experiment.  

These results have only a limited theoretical understanding in 20+ years

[M.G. Tiefenback, Ph.D Thesis, UC Berkeley (1986)]

Low Space-Charge Intensity Transport

Envelope Instability 

– Not Practical for Applications

Emittance Blow Up (Unexplained)

-- Not Practical for Applications

x
x High Space-Charge Intensity Transport

- Valid for Practical Applications

X HCX experiment

    (2004)

Empirical fit to higher-order 

stability boundary

Limits defined with respect 

to reasonable (smooth)

initial distributions
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Summary of beam stability with intense space-charge in a 

quadrupole transport lattice:  centroid, envelope, and theory 

boundary based on higher order emittance growth/particle losses 

Theory stability 

boundary points

[Lund and Chawla, NIMA 561 203 (2006)]

New theory analyzes processes relating to AG transport limits without equilibria 

 Suggests near core, chaotic halo resonances can drive strong emittance growth

   and particle losses  

Results checked with fully self-consistent simulations

Analogous results (with less “instability”) exist for solenoidal transport 
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S2:  Overview: 

Collective Modes and Transverse Kinetic Stability 

In discussion of transverse beam physics we have focused on:

Equilibrium

 Used to estimate balance of space-charge and focusing forces 

- KV model for periodic focusing

- Continuous focusing equilibria for qualitative guide on space-charge effects

such as Debye screening and nonlinear equilibrium self-field effects

Centroid/Envelope Modes and Stability

 Lowest order collective oscillations of the beam

- Analyzed assuming fixed internal form of the distribution

 Model only exactly correct for KV equilibrium distribution 

- Should hold in a leading-order sense for a wide variety of real beams

 Predictions of instability regions are well verified by experiment 

- Significantly restricts allowed system parameters for periodic focusing lattices
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Example – Envelope Modes on a Round, Continuously Focused Beam

The analog of these modes in a periodic focusing lattice can be destabilized 

 Constrains system parameters to avoid band (parametric) regions of instability
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Reminder (lecture on Centroid and Envelope Descriptions of Beams):

Instability bands of the KV envelope equation are well understood in

 periodic focusing channels

[S.M. Lund and B. Bukh, PRSTAB 024801 (2004)]

Solenoid (     = 0.25) Quadrupole FODO (     = 0.70)

Envelope Mode Instability Growth Rates
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More instabilities are possible than can be described by statistical 

(moment/envelope) equations.   Look at a more complete, Vlasov based kinetic 

theory including self-consistent space-charge:

Higher-order Collective (internal) Mode Stability

 Perturbations will generally drive nonlinear space-charge forces

 Evolution of such perturbations can change the beam rms emittance

 Many possible internal modes of oscillation should be possible 

- Frequencies can differ significantly from envelope modes

- Creates more possibilities for resonant exchanges with a periodic focusing 

  lattice and various beam characteristic responses opening many 

            possibilities for system destabilization
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Plasma physics approach to beam physics:

Resolve: 

equilibrium perturbation

Comments:

Attraction is to parallel the impressive successes of plasma physics

- Gain insight into preferred state of nature

Beams are born off a source and may not be close to an equilibrium condition 

- Appropriate single particle constants of the motion unknown for    

       periodic focusing lattices other than the KV distribution

Intense beam self-fields and finite radial extent vastly complicate equilibrium 

description and analysis of perturbations 

 

and carry out equilibrium + stability analysis 
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Vlasov Equation (see J.J. Barnard, Introductory Lectures): 

Review:  Vlasov Model: Transverse Vlasov model for a coasting, single species 

beam with electrostatic self-fields propagating in an applied focusing lattice:

Particle Equations of Motion: 

Hamiltonian (see S.M. Lund, lectures on Transverse Particle Equations of Motion): 

Poisson Equation:

 + boundary conditions on 

charge, mass 

axial relativistic factors

transverse particle coordinate, angle 

single particle distribution

single particle Hamiltonian
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Review: Focusing lattices, continuous and periodic

(simple piecewise constant):

Occupancy

Syncopation Factor

Lattice Period

Solenoid description

carried out implicitly in

Larmor frame 

[see Lund and Bukh, 

PRST- Accel. and Beams 7, 

024801 (2004), Appendix A]
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Continuous Focusing:

Quadrupole Focusing:

Solenoidal Focusing (in Larmor frame variables):

We will concentrate on the continuous focusing model in these lectures

 Kinetic theory is notoriously complicated even in this (simple) case

 By analogy with envelope mode results expect that kinetic theory of 

   periodic focusing systems to have more instabilities

 As in equilibrium analysis the continuous model can give simplified insight 

   on a range of relevant kinetic stability considerations
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S3: Linearized Vlasov Equation

Because of the complexity of kinetic theory, we will limit discussion to a simple

continuous focusing model Vlasov-Poisson system for a coasting beam within a 

round pipe

Then expand the distribution and field as:

equilibrium perturbation

At present, there is no assumption that the perturbations are small.
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The equilibrium satisfies: 

(see S.M. Lund, lectures on Transverse Equilibrium Distributions)

any non-negative function

Because the Poisson equation is linear:

The unperturbed distribution must then satisfy the equilibrium Vlasov equation:
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Insert the perturbations in Vlasov's equation and expand terms:

equilibrium term

equilibrium characteristics

of perturbed distribution

nonlinear termperturbed field 

linear correction term

0

Take the perturbations to be small-amplitude:

and neglect the nonlinear terms to obtain the linearized Vlasov-Poisson system:

<---  follows automatically from distribution/Poisson eq
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Solution of the Linearized Vlasov Equation, the method of characteristics

The linearized Vlasov equation is a integral-partial differential equation system

 Highly nontrivial to solve

 Method of characteristics can be employed to simplify analysis due to the

   structure of the equation

Note that the equilibrium Vlasov equation is:

Interpret:

as a total derivative evaluated along an equilibrium particle orbit.  This suggests 

employing the method of characteristics.
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Method of Characteristics:
Equilibrium orbit:

“Initial” conditions of characteristic orbit:

Then the linearized Vlasov equation can be expressed as:

This is a total derivative and can be integrated:

To analyze instabilities assume growing perturbations that grow in s

 Neglect initial conditions at                    and integrate
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Gives the self-consistent evolution of the perturbations

 Similar statement for nonlinear perturbations  (Homework problem)

Effectively restates the Poisson equation as a differential-integral equation that is 

solved to understand the evolution of perturbations

 Simpler to work with but still very complicated 
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S4: Collective Modes on a KV Equilibrium Beam

Unfortunately, calculation of normal modes is generally complicated even in 

continuous focusing.  Nevertheless, the normal modes of the KV distribution can 

be analytically calculated and give insight on the expected collective response of a 

beam with intense space-charge.  
Review: Continuous Focusing KV Equilibrium Undepressed 

betatron wavenumber

Beam edge radius

Beam number density

Dimensionless perveance

rms edge emittance
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Further comments on the KV equilibrium: Distribution Structure

Equilibrium distribution:

Forms a highly singular hyper-shell in 4D phase-space

Singular distribution has large “Free-Energy” to drive many instabilities

- Low order envelope modes are physical and highly important 

  (see lectures on Centroid and Envelope Descriptions of Beams)

Perturbative analysis shows strong collective instabilities

- Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983)

- Higher order instabilities (collective modes) have unphysical aspects

  due to (delta-function) structure of distribution and must be applied 

  with care (see lectures on Kinetic Stability of Beams)

- Instabilities can cause problems if the KV distribution is employed 

  as an initial beam state in self-consistent simulations

Schematic:
4D singular hyper-shell surface
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Expand Vlasov's equation to linear order with:

A full kinetic stability analysis of the KV equilibrium distribution is 

complicated and uncovers  many strong instabilities

[ I. Hofmann, J.L. Laslett, L. Smith, and I. Haber, Particle Accel. 13, 145 (1983); 

  R. Gluckstern, Proc. 1970 Proton Linac Conf., Batavia 811 (1971) ]

Solve the Poisson equation:

using truncated polynomials for internal to the beam to represent a 

“normal mode” 

Truncated polynomials can meet all boundary conditions

Eigenvalues of a Floquet form transfer matrix analyzed for stability properties

- Lowest order results reproduce KV envelope instabilities

- Higher order results manifest many strong instabilities

can be restricted to even or odd terms

order or mode

= perturbation

= equilibrium
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Higher order kinetic instabilities of the KV equilibrium are strong and 

cover a wide parameter range for periodic focusing lattices

Example: FODO Quadrupole Stability
4th order even mode

 [Hofmann et. al, Particle Accel. 13, 145 (1983)]

(undepressed) (fully depressed)-->   increasing space-charge  -->

Instabilities

(space-charge parameter)



SM Lund, USPAS, 2006 27Transverse Kinetic Stability

The continuous focusing limit can be analyzed to better understand 

properties of internal modes on a KV beam (1) 

[S. Lund and R. Davidson, Physics of Plasmas 5, 3028 (1998): see Appendix B, C]

Continuous focusing, symmetric beam:

Mode eigenfunction (2 n “order”):

Potential Density

nth order Legendre polynomial
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The continuous focusing limit can be analyzed to better understand 

properties of internal modes on a KV beam (2) 

Mode dispersion relation for              variations:

where:

Eigenfunction structure suggestive of wave perturbations often observed 

internal to the beam in simulations for a variety of beam distributions

n distinct branches for 2n order (real coefficient) polynomial dispersion 

relation

Some range of               will be unstable for all n > 1

- Instability exists for some n for 

- Growth rates are strong
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Continuous focusing limit dispersion relation results for KV beam stability

Notation Change:

[S. Lund and R. Davidson, 

  Physics of Plasmas 5, 3028 (1998): 

  see Appendix B, C]
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For continuous focusing, fluid theory shows that at least some branches of 

the KV dispersion relation are physical 

[S. Lund and R. Davidson, Physics of Plasmas 5, 3028 (1998)]

Fluid theory:
KV equilibrium distribution is reasonable in fluid theory

- No singularities

- Flat density and parabolic radial temperature profiles

Theory truncated by assuming zero heat flow

Mode eigenfunctions:

Exactly the same as derived under kinetic theory!

Mode dispersion relation:

Single, stable branch

- Agrees well with high frequency branch from kinetic theory

Results show that aspects of higher-order KV internal modes are physical!
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Continuous focusing limit dispersion relation results for KV beam stability

Notation Change:

[S. Lund and R. Davidson, 

Physics of Plasmas 5, 3028 (1998)]

n = 1, 

envelope 

mode

curves

overlap Red:    Fluid Theory

(no instability)

Black: Kinetic Theory

(unstable branches)
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S5: Global Conservation Constraints 

Apply for any initial distribution, equilibrium or not.

Strongly constrain nonlinear evolution of the system.

Valid even with a beam pipe provided that particles are not lost from the system and 

that symmetries are respected.

Useful to bound perturbations, but yields no information on evolution timescales.

1) Generalized Entropy

Applies to all Vlasov evolutions.

// Examples

// 

Line-charge:

Entropy:
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2) Transverse Energy in continuous focusing

Here,

~ Kinetic Energy

~ Potential Energy 

   of applied focusing forces

~ Self-Field Energy

Does not hold when focusing forces vary in s

- Can still be approximately valid for rms matched beams where energy will

          regularly pump into and out of the beam

Self field energy term diverges in radially unbounded systems (no aperture)

- Still useful if an appropriate infinite constant is subtracted (to regularize)
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Comments on system energy form:

Analyze the energy term:

Employ the Poisson equation:

or infinite constant 

in free space 

Giving:

Note the relation to the system Hamiltonian with a symmetry factor to not double 

count particle contributions

symmetry factor

zero for grounded aperture

in finite system
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Comments on self-field energy divergences:

In unbounded (free space) systems, far from the beam the field must look like a 

line charge:

finite term lograthmically 

divergent term

This divergence can be subtracted out to thereby regularized the system energy

-  Renders energy constraint useful for application to equilibria in radially

  unbounded systems such as thermal equilibrium

Resolve the total field energy into a finite (near) term and a divergent term:

total
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3) Angular Momentum

Focusing and beam pipe (if present) must be axisymmetric

- Useful for solenoidal magnetic focusing

- Does not apply to alternating gradient quadrupole focusing 

   since such systems do not have the required axisymmetry

4) Axial Momentum

Trivial here, but useful when models are generalized for coasting beams with

axial momentum spread
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Comments on applications of the global conservation constraints:

Global invariants strongly constrain the nonlinear evolution of the system

- Only evolutions consistent with Vlasov's equation are physical

- Constraints consistent with the model can bound kinematically accessible 

   evolutions

Application of the invariants does not require (difficult to derive) normal mode 

descriptions

- But cannot, by itself, provide information on evolution timescales

Use of global constraints to bound perturbations has appeal since distributions in

real machines may be far from an equilibrium.  Used to:

- Derive sufficient conditions for stability 

- Bound particle losses [O'Neil, Phys. Fluids 23, 2216 (1980) ]

- Bound changes of system moments (for example the rms emittance)

   under assumed relaxation processes

- Application does not require (difficult to derive) normal mode descriptions
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S6: Kinetic Stability Theorem for continuous focusing equilibria

[Fowler, J. Math Phys. 4, 559 (1963); Gardner, Phys. Fluids 6, 839 (1963);

 R. Davidson, Physics of Nonneutral Plasmas, Addison-Wesley (1990)]

Resolve:

Equilibrium (subscript 0) distribution

Perturbation about equilibrium

Employ generalized entropy and transverse energy global constraints:

Apply to equilibrium and full distribution to form an effective “free-energy”:
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The perturbed potential satisfies:

Take and Taylor expand to 2nd order

Without loss of generality, choose:

Then

Some algebra (few lines using partial integration) yields:

If then F is a sum of two positive definite terms and 

perturbations are bounded by F = const.
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Is a sufficient condition for stability

- Equilibria that violate may or may not be stable

Mean value theorem can be used to generalize conclusions for arbitrary amplitude

- R. Davidson proof 

If is a monotonic decreasing function of with

    then the equilibrium defined by is stable to 

arbitrary small-amplitude perturbations. 

Kinetic Stability Theorem

Value of F set by initial

perturbations and

concavity bounds

excursions

Drop zero subscripts in stability statement:
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// Example Applications of Kinetic Stability Theorem

// 

KV Equilibrium:

Thermal Equilibrium:

changes sign

inconclusive stability by theorem

monotonic decreasing, stable by theorem

,

Full normal mode analysis in Kinetic theory shows strong instabilities when space-charge 

becomes strong 

Not surprising, delta function represents a highly inverted population in phase-space with 

“free-energy” to drive instabilities

Waterbag Equilibrium:

monotonic decreasing, stable by theorem
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S7: rms Emittance Growth and Nonlinear Forces

Fundamental theme of beam physics is to minimize statistical beam emittance 

growth in transport to preserve focusability on target  

Return to the full transverse beam model with:

Linear Space-Charge Coefficient

Nonlinear Forces + Linear Skew Coupled Forces

(Applied and Space-Charge)

// Examples:

Self-field forces within an axisymmetric (mismatched) KV 

beam core in a continuous focusing model

Electric (with normal and skew components) 

sextupole optic based on multipole expansions

(see lectures on Particle Equations of Motion)

and express as:

//
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From the definition of the statistical (rms) emittance:

The linear terms cancel to show  for any beam distribution that:

Differentiate the squared emittance and apply the chain rule:

Insert the equations of motion:
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Implications of:

Emittance evolution/growth is driven by nonlinear or skew coupling forces 

- Nonlinear terms can result from applied or space-charge fields

- More detailed analysis shows that skew coupled forces 

   cause x-y plane transfer oscillations but there is still a 4D quadratic invariant

Minimize nonlinear forces to preserve emittance and maintain focusability

If the beam is accelerating, the equations of motion become:

and this result can be generalized (see homework problems) using the normalized 

emittance:
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S8: rms Emittance Growth and Nonlinear Space-Charge Forces
[Wangler et. al, IEEE Trans. Nuc. Sci. 32, 2196 (1985), Reiser, Charged Particle Beams, (1994)]

In continuous focusing all nonlinear force terms are from space-charge, giving:

For any axisymmetric beam it can be shown that:

self-field energy 

(per unit axial length)

These results give (Wangler, Lapostolle):

For any axisymmetric beam it can also be shown that:

W for an rms equivalent

uniform density beam
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Applies to both radially bounded and radially infinite systems

Result does not require an equilibrium for validity – only axisymmetry

For a beam with s-variation, this result suggests that only the (mismatched) KV 

equilibrium can subsequently evolve with no change in rms emittance

Result can be partially generalizable [J. Struckmeier and I. Hofmann, Part. Accel. 

39, 219 (1992)] to an unbunched elliptical beam

- Result may have implications to existence/nonexistence of nonuniform 

 density Vlasov equilibria in periodic focusing channels 

If the rms beam radius does not change much in the beam evolution:

Then the equation can be integrated to show that:

Final State Value – Initial State Value



SM Lund, USPAS, 2006 47Transverse Kinetic Stability

S9: Uniform Density Beams and Extreme Energy States

Construct minima of the self-field energy per unit axial length:

subject to: ... fixed line-charge

... fixed rms equivalent beam radius

Using the method of Lagrange multipliers, vary (Helmholtz free energy):

and require that variations satisfy the Poisson equation and conserve charge

Then variations terminate at 2nd order giving:

Integrating the 2nd term by parts and employing the Poisson equation then gives:
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For an extremum, the first order term must vanish, giving within the beam:

Result:

At fixed line charge and rms radius, a uniform density beam

minimizes the electrostatic self-field energy

From the Poisson equation, this can only be consistent with a uniform density 

axisymmetric beam.  The 2nd order term is positive definite, immediately implying 

that this extremum is a global minimum of F  
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This result, combined with Wangler's Theorem:

At fixed line charge and rms radius, a uniform density beam

minimizes the electrostatic self-field energy

shows that:

Self-field energy drives emittance evolution

- Nonuniform density => more     uniform density   <=> local emittance growth

- Uniform density => more nonuniform density <=> local emittance reduction

Try to maintain density uniformity to preserve beam emittance

Results can be partially generalized to 2D elliptical beams

[J. Struckmeier and I. Hofmann, Part Accel. 39, 219 (1992)]
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S10: Collective Relaxation and rms Emittance Growth

The space-charge profile of intense beams can be born highly nonuniform out of 

nonideal (real) injectors or become nonuniform due to a variety of (error)

processes.  Also, low-order envelope matching of the beam may be incorrect due 

to focusing and/or distribution errors. 

How much emittance growth and changes in other characteristic parameters may 

be induced by relaxation of characteristic perturbations?

 Employ Global Conservation Constraints of system to bound possible changes

 Assume full relaxation to a final, uniform density state for simplicity

What is the mechanism for the assumed relaxation?

 Collective modes launched by errors will have a broad spectrum

- Phase mixing can smooth nonuniformities – mode frequencies incommensurate

 Nonlinear interactions, Landau damping, interaction with external errors, ...

 Certain errors more/less likely to relax:

- Internal wave perturbations expected to relax due to many interactions

- Envelope mismatch will not (coherent mode) unless amplitudes are very large

  producing copious halo and nonlinear interactions
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Nonuniform Initial Beam Uniform Final Beam

Relaxation

Processes

Example: Relaxation of nonlinear space-charge waves

Reference:  High resolution self-consistent PIC simulations shown in class

Continuous focusing and a more realistic FODO transport lattice

- Relaxation more complete in real lattice due to a richer frequency spectrum

Relaxations surprisingly rapid:  few undepressed betatron wavelengths 
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Hollowed Initial Density Peaked Initial Density

Analogous definitions are made for the radial temperature profile of the beam

Initial Nonuniform Beam Parameterization

hollowing parameter

radial power
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Example Simulations, Initial Nonuniform Beam

[Lund, Grote, and Davidson, Nuc. Instr. Meth. A 544, 472 (2005)]

Initial density: h=1/4, p=8 Initial Temp: h = infinity, p=2
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Theory estimates made from global conservation constraints work well but what if 

the beam relaxed to a smooth thermal equilibrium profile instead?

Essentially

no rms 

changes

in 2nd step! 

Lund, Barnard, and Miller, PAC 1995, p. 3278
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S11: Phase Mixing and Landau Damping in Beams

To be covered in future editions of notes
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These slides will be corrected and expanded for reference and any future 

editions of the US Particle Accelerator School class:

Beam Physics with Intense Space Charge, by J.J. Barnard and S.M. Lund

Corrections and suggestions are welcome.  Contact:

SMLund@lbl.gov

Steven M. Lund 

Lawrence Berkeley National Laboratory 

BLDG 47 R 0112

1 Cyclotron Road

Berkeley, CA 94720-8201

 (510) 486 – 6936

Please do not remove author credits in any redistributions of class material.
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Suggested Bible

Charles K. Birdsall and A. Bruce Langdon, Plasma 
Physics via Computer Simulation, (McGraw Hill
1985). Chaps. 1 and 2 suffice.

4

All you need to know about beams …

Maxwell’s Equations:

Lorentz Force Law:

� � � �J  � u
JK K JK K JKd
F mv q E v B

dt

w
�u  �

w

JK

JK JK B
E

t

2

1
o

E
B J

c t
P

w
�u  �

w

JK

JK JK K

o

E
U
H

�x  
JK JK

0B�x  
JK JK



5

Some simple cases don't need simulation

V is surface charge density

x
0 D

VI=0 I=V

6

Theoretical Approach (this course, Reiser's book)

Simplify problem sufficiently to solve, e.g.:
• Single particle wandering through known lattice

• “Cylinder” beam with uniform density distribution

Even “analytical” cases like this often require computers to 
solve (numerical integration).
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Problem 1: Real Beams are not K-V

1.0 cm

Q1 Q3 Q4T Q2

1.0 cm

Semi-Gaussian Distribution

Hollow-Velocity Distribution

Experiment (100 mA) (top) [Bernal]

WARP Simulation (below) [Kishek ]
K-V Distribution
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Problem 2: Real Accelerators are Very Complex

The University of Maryland Electron Ring (UMER)
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Problem 3: Realistic Geometries May be Difficult

Electron Gun

K

A

1 cm

Grid

10

Problem 4: Real Accelerators are Expensive
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Computation has Many Advantages:

1. Verification of simpler analytic models.
Layers of complexity can be added or removed at will 
from the computer model.

2. Understanding and interpreting experimental results.
Simulation is much easier (and cheaper) to set up and 
perform than experiment.

3. To facilitate design of large, expensive accelerators.
The computer model can be used to study the physics of 
a large accelerator well before such an accelerator can 
be constructed.

12

Simulation

For real beams:
• Self-Fields linear only for uniform beam density

• Emittance conserved only for linear fields

• Envelope equation valid only if emittance conserved.

In general, evolution of beam size, emittance, and particle 
trajectories can be complicated and difficult to predict analytically.

Central issue:  What happens to charged particles in an 
environment of electric and magnetic fields?

Simulation : Applying physical laws (approximately) to 
model reality on a computer
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Where Does Simulation Fit in?
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14

Particle Simulations



15

Galaxies face similar issue-how to model 1011 stars?

16

Coulomb’s Law

q1

q2 1
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Gravity – same form, different sign

2
ˆGM

g r
r

 �
JK

2
ˆGmM

F mg r
r

  �
JK JK
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Classification of Computing Methods

Lund Notes - classify by the way the beam is 
represented:

• Particle Methods
• Distribution Methods
• Moment Methods
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Approach

• Start with simplest brute force approach

• Find out problems with that approach

• Add some sophistication

• Find out problems

Each technique has its own strengths and weaknesses

Need to be aware of the boutique of available 
computational methods

20

Rami: Classification by Physical Laws (Loose) 

Maxwell’s Equations:

Lorentz Force Law:

� � � �J  � u
JK K JK K JKd
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Specific Needs Behind Computing

• Field Solvers :  Calculating the electromagnetic fields 
affecting the particles.

• Particle Trackers :  Calculating particle trajectories in 
those fields.

• Calculating electric and magnetic fields generated by 
those particles.  Self-Consistency o Particle-in-cell (PIC) 
Codes .

In most realistic situations, these factors are difficult to 
derive analytically.

Analytical models typically employ drastic simplification, 
which may or may not result in correct predictions.

22

Types of Accelerator Codes

Field Solvers

Static
Poisson
COULOMB

Eigenmode
YAP

Time Domain
MAFIA
AMOS
GDFIDL
Maxwell

Other
SuperFISH

Magnet Design
MAGPC
Maxwell 3D

Particle-in-Cell

Electrostatic
pdp1 / pdc2 / etc.
WARP

Electromagnetic
MAGIC / SOS
OOPIC
ARGUS
VORPAL

Gun Codes

E-Gun

Particle Trackers
Transfer Maps

MaryLie
Matrices

MAD / DIMAD
TRANSPORT

Multi-Particle
PARMELLA/ILLA
COZY

Other
SIMION

Envelope

TRACE
PBOLab
EMATCH
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Other Approaches

Plasma Codes

Fluid model
Vlasov-Poisson model -
Gf Methods
Green’s Function model

Other Accelerator Codes

Mechanical: structural / thermal
/ vacuum (ProE)

Radiation
Optics; FELs
Controls (LabView; EPICS)
Data Processing 
Systems

Hybrid Codes

Particle-core model:
Envelope or PIC model for 
beam bulk (core); 
Tracking of halo particles. 

PIC + map codes:
use PIC for self-fields;
transfer maps for external

Fluid + Envelope: (CIRCE)
Fluid for longitudinal;
Envelope for transverse

24

A Few Notes of Caution

• Successful codes are usually tremendous projects
• You really don’t want to develop a new code if an 

existing one contains suitable approximations
• Sometimes a “less accurate” approximation can work 

better than more sophisticated models
• GIGO: The results you get are (at best) as good as the 

input you put in
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Multiparticle Model

q2

q1

21
24 or

qq
SH

q3
32

24 or
qq

SH
31

24 or
qq

SH

Number of Interactions ~ N p
2
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N-Body Problem

• Typical beam contains ~ 109 particles.

• Typical galaxy contains ~ 1011 stars.

• Laboratory plasmas may contain 1012 - 1015 cm-3 and
inertial fusion plasmas up to ~ 1022 cm-3.

• Even with 109 particles, calculation of particle-particle 
interaction for every particle implies 1018 calculations
to determine the forces.

• Once particles are advanced, forces change, and 
all 1018 interactions have to be recalculated.
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How Do We Simplify?

28

Approximation #1: Macroparticles

• Instead of accounting for every particle, take a 

statistical sample of particles o Macroparticles .

• A macroparticle is a special particle which carries the 
weight of a large number of particles when used to 
calculate the fields exerted on other particles.

• In response to a given field, the macroparticle moves 
as if it were a regular test particle.

• E.g, 109 particles o 105 particles.
Still have to deal with 1010 calculations.

Number of calculations ~ n p
2.
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Notes on Sampling

For Approximation to be valid, need to ensure:

• Number of macroparticles should be sufficiently large 
to give good statistics.

• Average behavior and distribution of macroparticles 
should resemble that of real beam.

30

Observation
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Approximation #2: Fields not Forces

• Do not deal with every possible interaction.

• Instead, use the concept of fields or potentials:
i. Interpolate particle positions onto grid to determine charge 

density.

ii. Calculate Fields as in previous lecture.

iii. Interpolate fields to position of each particle to determine 
force.

Total number of calculations ~ n p

• In addition, have to do field calculation which for a 
2D FFT ~ nx

2 log nx
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Uniform distribution 
of particles confined 

by external field 
I(r) = Ie(r) + Is(r)

How (When) is This Possible?

Grid method ignores close-collisions (interactions between 
particles within same cell).

This is justified in reality when large number of particles

Boltzmann distribution:
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Reiser Sec. 4.1
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How Do We Model 109 particles?

34

Galaxies Can Be Similarly Treated
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Debye Shielding

If:

Large number of particles (# particles in Debye sph ere = 
nOD

3 >> 1)

OD < R   (Space-Charge-Dominated)

Force from “collective” potential >> force from nearest neighbors

Probability of individual particle-particle interaction 
(Coulomb collisions) << collective interaction

Can use grid to model space-charge-force

Grid needs to be small enough enough to resolve potential 

variations (Rule of thumb 'x ~ OD/3)

Otherwise, individual “collisions” important and need be modeled

Particle Tracking and Numerical Methods

Rami Kishek
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Particle Trajectories: x-x’ Phase Space

x'

x

3

Pushing Particles (Tracking)

Maxwell’s Equations:

Lorentz Force Law:
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d
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Computer Limitations

• Computers can only handle numbers (binary, no less).

• Computers can only perform simple arithmetic (no
differentiation).

• Furthermore, computers can only handle a finite
number of data.  Continuous functions (made of 
infinite number of “points”) must be discretized.

• Can only deal with bounded problems.

5

Particle Pushing

� �J

 

 

JK

K

JK K

dx
v

dt
d

F mv
dt

Equations of Motion
(Newton)

To determine position of a particle as a function 
of time in response to a given force, need to 
integrate equations of motion.

Note: Forces can be time-dependent.

Know derivatives of function – want to predict 
function’s future values
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P
os

iti
on

, x

step size

discretization
error

rounding error

• Particle positions and velocities change continuously 
with respect to time, but computer can hold only finite 
number of quantities. 

• Hence treat time (or s) as a discrete quantity:  care 
about particle positions and velocities only at discrete 
instances of time.

Time Discretization

7

Time

P
os

iti
on

, x

(t1, x1)

(t2, x2)

slope = (x 2-x1)/(t2-t1)

Tangent,
v = dx/dt

prediction from 
Euler method

Euler Method

As 't = (t2-t1) o 0, then slope o dx/dt
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Forward-, Backward-, & Central-Differences

Forward- and Backward- Differences Converge as 's

Central-Difference Converges as ('s)2

( ) ( )
( )

� ' �
c |

'

f s s f s
f s

s
Forward-Difference

( ) ( )
( )

� � '
c |

'

f s f s s
f s

s
Backward-Difference

( ) ( )
2 2( )

' '
� � �

c |
'

s s
f s f s

f s
s

Central-Difference
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Accuracy of Difference Method

Taylor Expand arbitrary function:

Subtract 2 Equations:

2( ) ( )
( ) ( ) ...

2 6
� ' � � ' '

c ccc � �
'

f s s f s s s
f s f s

s

Add 2 Equations:

2

2

( ) ( ) 2 ( )
( ) ( ) ...

12
� ' � � ' � '

cc  � �
'

ivf s s f s s f s s
f s f s

s

� �
2 3 4

5

2! 3! 4!( ) ( ) ( ) ( ) ( ) ( )' ' '
'�c cc ccc c� '  � ' � � �

vs s s O sf s s f s sf s f s f s f s

� �
2 3 4

5

2! 3! 4!( ) ( ) ( ) ( ) ( ) ( )' ' '
'�c cc ccc c� '  � ' � � �

vs s s O sf s s f s sf s f s f s f s
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Discretization Errors

Can reduce errors in 2 ways:

– Use smaller time steps

– Use higher-order integration technique which converges 

faster as a function of time step.

Examples,

Euler method converges as 't or 's

4th-order Runge-Kutta converges as ('t)4.

Center-Difference Methods converge as ('t)2.

11

LeapFrog Methods

� � � � � � � �2
tx t t x t t v t '� ' # � ' �

� � � � � � � �2 2
t tmv t mv t t F tJ J' '� # � � '

Eqns of Motion: 2 first-order differential equation
center-difference expansion of each

Notes:

Positions and Velocities not known at same points.

Electric forces depend only on particle positions.

Get ('t)2 convergence for only one calculation per step 
per equation.

Pair not self-starting.  Need to integrate backwards 1/2 
step to start.
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The Leap Frog

X
F

X
F

X
F

v v v

t

)2/()()( ttvttxttx '�u'� '�

mtFtttvttv /)()2/()2/( u'�'� '�

Note that the forces depend only on the particle po sitions.
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• Only second order but simple (and appropriate because of 
truncation errors in field solution).

• Solves an easy to visualize physical problem, i.e. gives the 
correct answer for a force which is constant over the 
integration interval

• Symplectic
• time-centered and reversible, I.e. simulation can be run 

backward
• Langdon called these characteristics “virtuous”. 

Why use leapfrog ?
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Implications of Leapfrog

• To obtain useable output, velocity and position of 

particles must be measured at the same time.

• Therefore, at all instances of time in which diagnostic 

output is desired, the calculation must be advanced 

1/2 step to synchronize position and velocity o semi-

Leapfrog.

• This is expensive.

15

Integrating the envelope equation

• Can use same methods for general purpose 
integration



Computation in Beams: Field Solvers

Rami Kishek

2

How Do We Model 10 9 particles?Review:
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Solving for Fields

Maxwell’s Equations:

Lorentz Force Law:

� � � �d
F mv q E v B

dt
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Humphries CPA 4.2, 4.5
Birdsall Chap 2
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Static Approximation (steady state)
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Electrostatic Case

First Equation, allows us to define 
electrostatic potential, I:

0E�u  
JK JK

E I ��
JK JK

E I�x  ��x�
JK JK JK JK

2 2 2
2

2 2 2
ox y z

I I I U
I

H
w w w

�  � �  �
w w w

Poisson Eqn

If no space charge, U�= 0,
2 0I�  Laplace’s Eqn

6

Solving for E-S Potential numerically

Divide space into grid.

Quantities (e.g., 
charge density, 
potential) defined on 
the grid.

ii-1i-2 i+1 i+2 i+3

j-2

j-1

j

j+1

j+2

j+3

'y

'x

Ii,j

Boundary
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Boundary Conditions

Dirichlet B.C.: I(border point) = constant

Neumann B.C.: 

0 for conducting 
boundary

const
x
Iw
 

w

8

Other Gridding Geometries Possible

Alternative gridding 
may be more suitable

However, Pay a Price:

- Difference equations
more complex

- Resolution varies in 
different parts of beam

- Gridding may 
introduce unphysical 
behavior

Adaptive Mesh (grid size changes with location to model 
details at higher resolution).  Again more complex.

HW Problem
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Forward-, Backward-, & Central-Differences

( ) ( )
( )

( ) ( )
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( ) ( )
2 2( )
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f x
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x x
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'
' '

� � �
c |

'

Forward-Difference

Backward-Difference

Central-Difference

Forward- and Backward- Differences Converge as 'x

Central-Difference Converges as ('x)2

Here
x
w
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w
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Accuracy of Difference Method
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Transform Poisson’s Equation

Derivative � Finite Difference

� � � � ,( , ) , , ' '   i jx y i x j y i jI I I I

1 1
, ,

2 2

' '
2

,
2

i j i ji j

x x

I I
I � �

�
w

|
w '

Error in 2nd derivative 
~ O('x2)

Central-Difference Estimate
Error ~ O( 'x2)1

1 2,
2

1, ,'
,
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�w
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i jx x

I I
I I
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Finite-Difference Form of Laplacian Operator
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2-D
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Potential at each point is average of 
that at neighboring points
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Poisson’s Equation

� �1, 1, , 1 , 1 ,

2
,4
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Can generalize to 3-D …
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A. Tridiagonal matrices : 1-D Problems 

B. Finite-Difference Methods : (for higher-D)

• Gauss-Seidel: Iteration

• Successive Over-Relaxation (SOR): Enhanced Iteration
Most general method.

• Multi-grid Methods: SOR with changing grid size each 
iteration.

• Conjugate Gradient : Sparse Matrices

C. Fourier Transforms .

Algorithms for Solving Coupled Difference 
Equations

16

A.  Tridiagonal Matrices
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B.  Finite Difference Methods

1. Write Difference equations for each point on the grid.

2. Results in system of N coupled algebraic equations
with N unknowns where N is the number of 
gridpoints.

3. Can solve, in principle at least.

In practice, for large N, or for complicated boundaries, 
system can be difficult to solve.  For example, inversion of 
large matrix not computationally efficient.

18

Iterative Solution Procedure (Gauss-Seidel)

1. Initial guess of I at all points.

2. Calculate charge density and load on grid.

3. Impose Boundary Conditions

4. Generate Next Guess by calculating potential at 
each point from existing data.

5. Iterate until solution converges (typically some 
200 iterations).



19

ii-1i-2 i+1 i+2 i+3

j-2

j-1

j

j+1

j+2

j+3

Boundary

Demonstration
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Successive Over-Relaxation (SOR) Method

Define Residual for each iteration, n:

� �
, , ,

1, 1, , 1 , 1 ,

1

1
4

i j i j i j

i j i j i j i j i j

n calc nR I I

I I I I I
� � � �

� �

 � � � �

1� �n n nRI I Z
Over-relaxation

coefficient, 1 d Z d 2

Obviously, solution converges when R = 0



21

Notes on SOR method

Check for yourselves:

Z = 1 corresponds to simple averaging and iteration 
(Gauss-Seidl)

Z = 2 corresponds to overshooting so as to achieve faster 
convergence.  Gives more weight to new value of I.

Convergence still SLOW!

E.g., for an n × n 2-D grid, calculation time ~ n 3, since need 
order n iterations to propagate errors out of mesh.
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So Why use SOR?

Finite-Difference gives closed set of equations, so can 
solve in principle.

Solution can get messy for complicated geometries.

SOR does not care about complexity of boundaries!
Takes about as much time to solve a complicated problem as 
a simple one, for a given number of grid cells.
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Multi-Grid Iteration

30 V

20 V

35 V

15 VFaster than SOR for same resolution
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C.  FFT Methods

Much faster than SOR - no iterations are needed.
Basic idea:

Transform to Fourier Domain

Differentiation becomes multiplication

Transform Back to spatial domain

� �
� �
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See Lund Notes
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Why FFT?

Takes advantage of Fast Fourier Transform routines, 

hence converges much faster:

FFT of N points takes ~ N log N calculations

For n × n 2-D grid, total number of points N = n2, so FFT 

converges as n2 log n2 = 2 n2 log n

Better than n3
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Limitation of FFT Method

Can only implement simple boundaries, e.g., round pipe.

To include conducting boundary, calculate equivalent 
image charge needed to produce zero-potential on it.

1. Calculate a capacitance matrix relating potential on 
boundary points to image charges at the boundary.

2. Solve for the potential without any images.

3. Multiply the potential at the boundary points by the 
capacitance matrix to get the induced images.

4. Add the images to the total charge and recalculat e the 
potential.
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Magnetostatic Calculations

Frequently desire to know magnetic field of a DC 
electromagnet.  Know current configuration, want B-
field.

Possible methods:
– Vector Potential
– Biot-Savart Law
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Electromagnetic

Use full set of equations.
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Wave Equation

2 2
2

2 2c
t x
K Kw w
 

w w
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Notes on Electromagnetic Calculations

• In general more difficult to solve.

• Time needs to be discretized as well.

• For leapfrog algorithms, x and v not known 

simultaneously.  Hence, U, and J, and consequently E
and B not known simultaneously either. 

• Leads to instability if  c 't > 'x

Courant Condition: � �2

2 2

1 1
1c t

x y
§ ·

' � �¨ ¸' '© ¹



Particle-in-Cell Codes (PIC)

Rami Kishek

2

Self-Consistent method for solving 
Maxwell’s Equations and Lorentz Force Law :

Uses macroparticles to sample actual particles 

Represents fields on a grid .

Particle-in-Cell (PIC)
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Initialization:
Fields, Particles, ...

Periodically:
Checkpoint,
Send Graphs

to File

Every Step:
One-liner out

(to file)

Cleanup: Save Data, Postprocess,
Additional Plots

Structure of a PIC Code

Run Loop:
- Load Particles on Grid
- Calculate Fields
- Interpolate Fields 

to Particle Positions
- Update Velocities
- Push Particles
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Components of a PIC code

• Field Calculation
• Particle Pushing
• Interpolation schemes
• Particle Loading
• Diagnostics and Output.
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Interpolation Schemes

Nearest Gridpoint (NGP)

Cloud-in-cell

Higher-Order
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Particle Loading

• Populating Phase Space

• Random number generation

• Initial distributions
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Particle Simulation Caveat: Particle Loading

Populating Phase Space:
“Pseudo-Random” vs. “Quiet Start”

x

vx

x

vx
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Particle Simulation Caveat: Particle Loading

Populating Phase Space:
“Pseudo-Random” vs. “Quiet Start”
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The Dangers of “Quiet-Start”
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Enhancing Speed

• Symmetry
• Filtering
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Self-Consistency

• With sufficient space charge, forces generated 
between particles need to be included in model.

• Motion of the particles will change these self-forces, 
hence the calculation needs to be updated as the 
particles move, e.g., every time step.

• Space charge forces can be represented in several 
different ways, e.g., as an averaged linear force, etc.

• We are primarily interested in a representation of 
space charge forces that is self-consistent with the 
particle model.
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Output

• 1/2 Time step to synchronize position and velocity 
before recording output.  Visualization is an important 
aspect.

• Real-time interactive graphics vs.. No Output!
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One-liners: a Suitable Compromise

One line of text for each step listing values of selected 
variables.  Useful for keeping an eye in case anything 
goes wrong, e.g.,

it =    30 zbeam =   0.45000 2*xrms =    9.52 emity =   58.55 nplive =     1000

it =    40 zbeam =   0.60000 2*xrms =    9.81 emity =   58.56 nplive =     1000

it =    50 zbeam =   0.75000 2*xrms =   10.11 emity =   58.56 nplive =     1000
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Graphical Output

• Graphical output is for human consumption.

• Need graphics in order to condense the massive 
amounts of data generated by simulation.

• Need to display it in presentable form.

• Graphical output also useful for comparison of 
different simulations.
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Sources of Error

• Macroparticle Statistics

• Discrete Time Step

• Discrete Potential (gridcells)

• Input and initialization errors; particle loading

• Modeling issues

1

Advanced  Computing Topics

Rami Kishek
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Parametric Resonance

Envelope oscillations

Particle oscillations

Envelope oscillations

Particle oscillations

3

1.0 cm

24 mA, 
10 keV

1.0 m

S. Bernal (PAC ’03)

First UMER Experiments 
(during construction)

Rotated Beam

RMS
Mismatched
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Dynamic Range Problem

• Interested in halos.

• Halos can contain as little as 10-5 particle density as in 
the main beam.

• Resolving that accurately requires very good particle 
statistics.  For a PIC code, this means 109 particles,
or more.
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Possible Solutions

1. Enhance Speed of PIC codes:

– Sub-Cycling: do not solve for fields at every step

– Split-operator techniques (maps + PIC)

2. Particle-Core Models

3. Subtract out main beam particles, I.e., look only at 

halo or perturbation Ä Gf

4. Direct Solution in terms of particle “density” Ä
“Vlasov Solvers”

5. Hybrid Codes
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2. Particle Core Model: Edge Lensing

F = 0.7, V
0
= 76

0
, S = 0.32 m

a = 5 mm, K = 3.0x10
-4

, H= 57 Pm
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Matrix Techniques and Maps
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TRANSPORT: Library of lattice element matrices

TRACE: Advances beam ellipse using matrix models of lattice

MARYLIE: Lie mapping of lattice elements, can handle nonlinearity
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Following slides courtesy of VNL …

Alex Friedman, Ron Davidson, Eric Sonnendrucker, 
Wei W. Lee, Bill Sharp, & Dave Grote
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initial

E.g., Electron-Proton 2-Stream Instability, growing from initial noise
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3. Perturbative (Gf) Method:  PPPL code BEST

x
y

Offers reduced noise for detailed studies of instability, beam-
plasma, and electron processes.

Dipole “surface mode” can be destabilized by backgr ound electrons

For each particle,
ƒi = ƒi0 + Gƒi

Evolve Gƒi step-by-
step along orbit

In a nonlinear 
calculation, orbit is 
computed using full 
field E 0 + GE
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Review: Computation: Vlasov Solvers

No particles!

6-D (4-D) grid

– Define density in phase space, f(x,y,z, vx,vy,vz)

– Evolve by numerically solving Vlasov Equation

Advantages:

– Get smooth distribution at all times, no numerical collisions.

Disadvantages:

– Grid very large compared to PIC code with same resolution 
(e.g. 1282 = 16.3k; 1284 = 268M).

– Advancing each cell requires interpolation every time step.
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4. Semi-Lagrangian Vlasov Solver (SLV)

Black contour lines: 0.1, 0.01, 0.001, 0.0001, and 0.00001 of peak

The distribution function ƒ(x,v) is retained at nodes of a 4-D mesh

The calculation reaches backward in time along a ch aracteristic (orbit in 
phase space) to obtain the current value of ƒ at each node

Thus, Low-density and high-density regions of phase space are tracked 
equally well ; this is useful for halo studies
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5. Moment methods (e.g. CIRCE)

• Physics model: 
– longitudinal: hundreds of “slices” in a Lagrangian fluid 

model
– transverse: each slice evolved using envelope and 

centroid equations

• Applications:
– acceleration and compression schedules, “ears”
– error tolerances
– beam sensing and steering

• Limitations (perhaps not fundamental ...):
– no model for emittance growth or phase-mixing of 

“mismatch”
– no module impedance model
– slow variation along beam assumed

13

The beam’s current and velocity must be tailored to 
achieve compression and pulse shaping (CIRCE calculation)
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Testing: A Case Study on Validation

Rami Kishek

AMSC 664 2

Quote of the Day

“After you break up with your girlfriend, it takes 
twice as much time to get over her as the time 
you actually spent together!”

- a friend of mine

“After you think you’re done writing a program, it 
takes you twice as much time to debug it as the 
time you actually spent writing it.”

- my rule of thumb
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WARP Code

• Electrostatic Particle-in-Cell (PIC) Code.

• Flexible Geometries: 2-D (x-y, r-z) and 3-D.

• Contains various accelerator models for representing 
external lenses.

• Includes many different Poisson solvers (SOR, FFT, 
multi-grid, adaptive meshing).  Subgrid interpolation 
allows for curved boundaries.

• Follows the beam around bends.

AMSC 664 4

5-Beamlet Experiment

simulation experiment

~ 1989
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e-Beam Injector Experiment, 1998-1999

AMSC 664 6

Experimental setup complicated

http://www.ireap.umd.edu/umer/ringdesign/protoinjex per.html
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Phosphor screen photo used to determine size

Intensity

Position along 
screen

Profile across cross-section is hollowed:

Beam Size

AMSC 664 8

Initial Results Disagree

Simulation

Experiment
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Attempted different models to reproduce data

1. Slightly varied initial conditions

2. Slightly varied magnet strength

3. Refined description of magnet fields

4. Added relativistic effects

5. Superimposed effect of beam ends

AMSC 664 10

Beam Ends – a Clever Explanation

Time

Current

Energy

Time

P-screen an Integrating Diagnostic
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Near Perfect Fit
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AMSC 664 12

Beam Ends – an Explanation?

• Perfect agreement between simulation code and 
experiment …

• … without either of them agreeing with reality

• Testing the Hypothesis: Experiment with different 
pulse lengths

Time

Current
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One day in the lab, however, caught a strong hint

Intensity

Position along 
screen

Calculated Power 
Deposition on 
Phosphor screen:

Too much!

AMSC 664 14

Attempted Explanations of Disagreement

• Wrong magnetic fields or initial conditions - Sensitivity
Studies (Solenoid Strength, Initial Slope, Emittance)

• Possibility of head and tail particles smearing 
measurement - P-screen an Integrating Diagnostic

• Code problems?  Benchmarked some other published 
experiment - OK.

• Experiment: P-screen damage?  Power deposition
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Opened Up Experiment: found many things wrong

1. Phosphor-screen was damaged

2. Initial conditions (measured using screen) were 
wrong (by factor of 2)! 

3. Hence, magnets were also set for wrong values in 
experiment

4. Magnetic field used in simulation not exactly as 
experiment

5. Camera system dated to 1980s, needed replacement

6. Processing of experimental data slow – used image 
processing to automate and enhance

AMSC 664 16

Another Problem: Solenoid Magnet Field Profile
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Revision of experiment and simulation resulted in 
much better agreement

AMSC 664 18

Agreement also in density profile

S. Bernal, et. al., PRL, 82, 4002 (1999).

Z=17 cm 27 cm 35 cm 42 cm 50 cm 58 cm 66 cm 74 cm

1 cm
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Z=50 cm 70 cm 90 cm 230 cm110 cm 130 cm 150 cm 170 cm 190 cm 210 cm
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Experiment

Simulation

Simulation
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